Modeling of BRT System Travel Time Prediction Using AVL Data and ANN Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43966581" target="_blank" >RIV/49777513:23520/21:43966581 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.istiee.unict.it/sites/default/files/files/ET_2021_84_6.pdf" target="_blank" >http://www.istiee.unict.it/sites/default/files/files/ET_2021_84_6.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.48295/ET.2021.84.6" target="_blank" >10.48295/ET.2021.84.6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling of BRT System Travel Time Prediction Using AVL Data and ANN Approach
Popis výsledku v původním jazyce
Improving the quality of public transportation systems and encouraging passengers to use them are effective solutions for reducing transportation problems in metropolitan. Prediction of travel time and providing information to passengers are significant factors in this process. In this research not only the travel time components in Bus Rapid Transit (BRT) system were investigated but also an Artificial Neural Network (ANN) model and a regression model for travel time prediction were presented. To enhance this aim, data was collected by AVL data and field observation and after investigating the primary independent variables, the significant ones were determined using statistical analysis, then ANN development was done. Moreover, linear regression method was used for this purpose. The results prove that although both models have high level of prediction accuracy, ANN model outperform the regression model and the accuracy for the route sections with no signalized intersections is higher than the others.
Název v anglickém jazyce
Modeling of BRT System Travel Time Prediction Using AVL Data and ANN Approach
Popis výsledku anglicky
Improving the quality of public transportation systems and encouraging passengers to use them are effective solutions for reducing transportation problems in metropolitan. Prediction of travel time and providing information to passengers are significant factors in this process. In this research not only the travel time components in Bus Rapid Transit (BRT) system were investigated but also an Artificial Neural Network (ANN) model and a regression model for travel time prediction were presented. To enhance this aim, data was collected by AVL data and field observation and after investigating the primary independent variables, the significant ones were determined using statistical analysis, then ANN development was done. Moreover, linear regression method was used for this purpose. The results prove that although both models have high level of prediction accuracy, ANN model outperform the regression model and the accuracy for the route sections with no signalized intersections is higher than the others.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20104 - Transport engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Transport / Trasporti Europei
ISSN
1825-3997
e-ISSN
—
Svazek periodika
84
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
000743358400001
EID výsledku v databázi Scopus
2-s2.0-85123735748