Cyclic connectivity, edge-elimination, and the twisted Isaacs graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43964092" target="_blank" >RIV/49777513:23520/22:43964092 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0095895622000077" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0095895622000077</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2022.01.007" target="_blank" >10.1016/j.jctb.2022.01.007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cyclic connectivity, edge-elimination, and the twisted Isaacs graphs
Popis výsledku v původním jazyce
Edge-elimination is an operation of removing an edge of a cubic graph together with its endvertices and suppressing the resulting 2-valent vertices. We study the effect of this operation on the cyclic connectivity of a cubic graph. Disregarding a small number of cubic graphs with no more than six vertices, this operation cannot decrease cyclic connectivity by more than two. We show that apart from three exceptional graphs (the cube, the twisted cube, and the Petersen graph) every 2-connected cubic graph on at least eight vertices contains an edge whose elimination decreases cyclic connectivity by at most one. The proof reveals an unexpected behaviour of connectivity 6, which requires a detailed structural analysis featuring the Isaacs flower snarks and their natural generalisation, the twisted Isaacs graphs, as forced structures. A complete characterisation of this family, which includes the Heawood graph as a sporadic case, serves as the main tool for excluding the existence of exceptional graphs in connectivity 6. As an application we show that every cyclically 5-edge-connected cubic graph has a decycling set of vertices whose removal leaves a tree and the set itself has at most one edge between its vertices. This strengthens a classical result of Payan and Sakarovitch (1975) .
Název v anglickém jazyce
Cyclic connectivity, edge-elimination, and the twisted Isaacs graphs
Popis výsledku anglicky
Edge-elimination is an operation of removing an edge of a cubic graph together with its endvertices and suppressing the resulting 2-valent vertices. We study the effect of this operation on the cyclic connectivity of a cubic graph. Disregarding a small number of cubic graphs with no more than six vertices, this operation cannot decrease cyclic connectivity by more than two. We show that apart from three exceptional graphs (the cube, the twisted cube, and the Petersen graph) every 2-connected cubic graph on at least eight vertices contains an edge whose elimination decreases cyclic connectivity by at most one. The proof reveals an unexpected behaviour of connectivity 6, which requires a detailed structural analysis featuring the Isaacs flower snarks and their natural generalisation, the twisted Isaacs graphs, as forced structures. A complete characterisation of this family, which includes the Heawood graph as a sporadic case, serves as the main tool for excluding the existence of exceptional graphs in connectivity 6. As an application we show that every cyclically 5-edge-connected cubic graph has a decycling set of vertices whose removal leaves a tree and the set itself has at most one edge between its vertices. This strengthens a classical result of Payan and Sakarovitch (1975) .
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Combinatorial Theory, Series B
ISSN
0095-8956
e-ISSN
—
Svazek periodika
155
Číslo periodika v rámci svazku
Leden
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
28
Strana od-do
17-44
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85123885552