Perfect matchings in highly cyclically connected regular graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43964193" target="_blank" >RIV/49777513:23520/22:43964193 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/jgt.22764" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/jgt.22764</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jgt.22764" target="_blank" >10.1002/jgt.22764</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Perfect matchings in highly cyclically connected regular graphs
Popis výsledku v původním jazyce
A leaf matching operation on a graph consists of removing a vertex of degree 1 together with its neighbour from the graph. Let G be a d‐regular cyclically (d k − 1+2 )‐ edge‐connected graph of even order, where k ≥ 0 and d ≥ 3. We prove that for any given set X of d k − 1 + edges, there is no 1‐factor of G avoiding X if and only if either an isolated vertex can be obtained by a series of leaf matching operations in G − X, or G − X has an independent set that contains more than half of the vertices of G. To demonstrate how to check the conditions of the theorem we prove several statements on 2‐factors of cubic graphs. For k ≥ 3, we prove that given a cyclically (4k − 5)‐edge‐connected cubic graphG and three paths of length k such that the distance between any two of them is at least 8k − 16, there is a 2‐factor of G that contains one of the paths. We provide a similar statement for two paths when k = 3 and k = 4. As a corollary we show that given a vertex v in a cyclically 7‐edge‐connected cubic graph, there is a 2‐factor such that v is in a circuit of length greater than 7.
Název v anglickém jazyce
Perfect matchings in highly cyclically connected regular graphs
Popis výsledku anglicky
A leaf matching operation on a graph consists of removing a vertex of degree 1 together with its neighbour from the graph. Let G be a d‐regular cyclically (d k − 1+2 )‐ edge‐connected graph of even order, where k ≥ 0 and d ≥ 3. We prove that for any given set X of d k − 1 + edges, there is no 1‐factor of G avoiding X if and only if either an isolated vertex can be obtained by a series of leaf matching operations in G − X, or G − X has an independent set that contains more than half of the vertices of G. To demonstrate how to check the conditions of the theorem we prove several statements on 2‐factors of cubic graphs. For k ≥ 3, we prove that given a cyclically (4k − 5)‐edge‐connected cubic graphG and three paths of length k such that the distance between any two of them is at least 8k − 16, there is a 2‐factor of G that contains one of the paths. We provide a similar statement for two paths when k = 3 and k = 4. As a corollary we show that given a vertex v in a cyclically 7‐edge‐connected cubic graph, there is a 2‐factor such that v is in a circuit of length greater than 7.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF GRAPH THEORY
ISSN
0364-9024
e-ISSN
1097-0118
Svazek periodika
100
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
28-49
Kód UT WoS článku
000710868900001
EID výsledku v databázi Scopus
2-s2.0-85118139855