Forbidden induced pairs for perfectness and ω-colourability of graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43965408" target="_blank" >RIV/49777513:23520/22:43965408 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.37236/10708" target="_blank" >https://doi.org/10.37236/10708</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37236/10708" target="_blank" >10.37236/10708</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Forbidden induced pairs for perfectness and ω-colourability of graphs
Popis výsledku v původním jazyce
We characterise the pairs of graphs {X, Y} such that all {X, Y}-free graphs(distinct from C5) are perfect. Similarly, we characterise pairs {X, Y} such that all {X, Y}-free graphs (distinct from C5) are ω-colourable (that is, their chromatic number is equal to their clique number). More generally, we show characterizations of pairs {X, Y} for perfectness and ωcolourability of all connected {X, Y}-free graphs which are of independence at least 3, distinct from an odd cycle, and of order at least n0, and similar characterisations subject to each subset of these additional constraints. (The classes are non-hereditary and the characterisations for perfectness and ω-colourability are different.) We build on recent results of Brause et al. on {K(1,3), Y}-free graphs, and we use Ramsey’s Theorem and the Strong Perfect Graph Theorem as main tools. We relate the present characterisations to known results on forbidden pairs for χ-boundedness and deciding k-colourability in polynomial time.
Název v anglickém jazyce
Forbidden induced pairs for perfectness and ω-colourability of graphs
Popis výsledku anglicky
We characterise the pairs of graphs {X, Y} such that all {X, Y}-free graphs(distinct from C5) are perfect. Similarly, we characterise pairs {X, Y} such that all {X, Y}-free graphs (distinct from C5) are ω-colourable (that is, their chromatic number is equal to their clique number). More generally, we show characterizations of pairs {X, Y} for perfectness and ωcolourability of all connected {X, Y}-free graphs which are of independence at least 3, distinct from an odd cycle, and of order at least n0, and similar characterisations subject to each subset of these additional constraints. (The classes are non-hereditary and the characterisations for perfectness and ω-colourability are different.) We build on recent results of Brause et al. on {K(1,3), Y}-free graphs, and we use Ramsey’s Theorem and the Strong Perfect Graph Theorem as main tools. We relate the present characterisations to known results on forbidden pairs for χ-boundedness and deciding k-colourability in polynomial time.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Journal of Combinatorics
ISSN
1077-8926
e-ISSN
1077-8926
Svazek periodika
29
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
33
Strana od-do
nestrankovano
Kód UT WoS článku
000797338500001
EID výsledku v databázi Scopus
2-s2.0-85129466862