Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Forbidden induced pairs for perfectness and ω-colourability of graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43965408" target="_blank" >RIV/49777513:23520/22:43965408 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.37236/10708" target="_blank" >https://doi.org/10.37236/10708</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.37236/10708" target="_blank" >10.37236/10708</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Forbidden induced pairs for perfectness and ω-colourability of graphs

  • Popis výsledku v původním jazyce

    We characterise the pairs of graphs {X, Y} such that all {X, Y}-free graphs(distinct from C5) are perfect. Similarly, we characterise pairs {X, Y} such that all {X, Y}-free graphs (distinct from C5) are ω-colourable (that is, their chromatic number is equal to their clique number). More generally, we show characterizations of pairs {X, Y} for perfectness and ωcolourability of all connected {X, Y}-free graphs which are of independence at least 3, distinct from an odd cycle, and of order at least n0, and similar characterisations subject to each subset of these additional constraints. (The classes are non-hereditary and the characterisations for perfectness and ω-colourability are different.) We build on recent results of Brause et al. on {K(1,3), Y}-free graphs, and we use Ramsey’s Theorem and the Strong Perfect Graph Theorem as main tools. We relate the present characterisations to known results on forbidden pairs for χ-boundedness and deciding k-colourability in polynomial time.

  • Název v anglickém jazyce

    Forbidden induced pairs for perfectness and ω-colourability of graphs

  • Popis výsledku anglicky

    We characterise the pairs of graphs {X, Y} such that all {X, Y}-free graphs(distinct from C5) are perfect. Similarly, we characterise pairs {X, Y} such that all {X, Y}-free graphs (distinct from C5) are ω-colourable (that is, their chromatic number is equal to their clique number). More generally, we show characterizations of pairs {X, Y} for perfectness and ωcolourability of all connected {X, Y}-free graphs which are of independence at least 3, distinct from an odd cycle, and of order at least n0, and similar characterisations subject to each subset of these additional constraints. (The classes are non-hereditary and the characterisations for perfectness and ω-colourability are different.) We build on recent results of Brause et al. on {K(1,3), Y}-free graphs, and we use Ramsey’s Theorem and the Strong Perfect Graph Theorem as main tools. We relate the present characterisations to known results on forbidden pairs for χ-boundedness and deciding k-colourability in polynomial time.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Electronic Journal of Combinatorics

  • ISSN

    1077-8926

  • e-ISSN

    1077-8926

  • Svazek periodika

    29

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    33

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000797338500001

  • EID výsledku v databázi Scopus

    2-s2.0-85129466862