Efficient Implementation of Marginal Particle Filter by Functional Density Decomposition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966079" target="_blank" >RIV/49777513:23520/22:43966079 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.23919/FUSION49751.2022.9841367" target="_blank" >https://doi.org/10.23919/FUSION49751.2022.9841367</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/FUSION49751.2022.9841367" target="_blank" >10.23919/FUSION49751.2022.9841367</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Implementation of Marginal Particle Filter by Functional Density Decomposition
Popis výsledku v původním jazyce
The paper considers the solution to the state estimation problem of nonlinear dynamic stochastic systems by the particle filters. It focuses on the marginal particle filter algorithms which generate samples directly in the marginal space for the recent state. Their standard implementation calculates the sample weights by combining the samples from two consecutive time instants in the transition and proposal density function evaluations. This results in computational complexity quadratic in sample size. The paper proposes an efficient implementation of the marginal particle filter for which a functional tensor decomposition of the transition and proposal densities is calculated. The computational complexity of the proposed implementation is linear in sample size and the decomposition rank can be used to achieve a trade-off between accuracy and computational costs. The balance between the complexity and the estimate quality can be tuned by selecting the rank of the decomposition. The proposed implementation is demonstrated using two numerical examples with a univariate non-stationary growth model and terrain-aided navigation scenario.
Název v anglickém jazyce
Efficient Implementation of Marginal Particle Filter by Functional Density Decomposition
Popis výsledku anglicky
The paper considers the solution to the state estimation problem of nonlinear dynamic stochastic systems by the particle filters. It focuses on the marginal particle filter algorithms which generate samples directly in the marginal space for the recent state. Their standard implementation calculates the sample weights by combining the samples from two consecutive time instants in the transition and proposal density function evaluations. This results in computational complexity quadratic in sample size. The paper proposes an efficient implementation of the marginal particle filter for which a functional tensor decomposition of the transition and proposal densities is calculated. The computational complexity of the proposed implementation is linear in sample size and the decomposition rank can be used to achieve a trade-off between accuracy and computational costs. The balance between the complexity and the estimate quality can be tuned by selecting the rank of the decomposition. The proposed implementation is demonstrated using two numerical examples with a univariate non-stationary growth model and terrain-aided navigation scenario.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-11101S" target="_blank" >GA22-11101S: Tenzorový rozklad v aktivní diagnostice poruch pro stochastické rozlehlé systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 25th International Conference on Information Fusion, FUSION 2022
ISBN
978-1-73774-972-1
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
IEEE
Místo vydání
Linköping, Sweden
Místo konání akce
Linköping, Sweden
Datum konání akce
4. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000855689000167