Iterative Solution for the Narrow Passage Problem in Motion Planning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966432" target="_blank" >RIV/49777513:23520/22:43966432 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-08751-6_16" target="_blank" >http://dx.doi.org/10.1007/978-3-031-08751-6_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-08751-6_16" target="_blank" >10.1007/978-3-031-08751-6_16</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Iterative Solution for the Narrow Passage Problem in Motion Planning
Popis výsledku v původním jazyce
Finding a path in a narrow passage is a bottleneck for randomised sampling-based motion planning methods. This paper introduces a technique that solves this problem. The main inspiration was the method of exit areas for cavities in protein models, but the proposed solution can also be used in another context. For data with narrow passages, the proposed method finds passageways for which sampling-based methods are not sufficient, or provides information that a collision-free path does not exist. With such information, it is possible to quit the motion planning computation if no solution exists and its further search would be a loss of time. Otherwise, the method continues to sample the space with sampling-based method (a RRT algorithm) until a solution is found or the maximum number of iterations is reached. The method was tested on real biomolecular data - dcp protein - and on artificial data (to show the superiority of the proposed solution on better-imagined data) with positive results.
Název v anglickém jazyce
Iterative Solution for the Narrow Passage Problem in Motion Planning
Popis výsledku anglicky
Finding a path in a narrow passage is a bottleneck for randomised sampling-based motion planning methods. This paper introduces a technique that solves this problem. The main inspiration was the method of exit areas for cavities in protein models, but the proposed solution can also be used in another context. For data with narrow passages, the proposed method finds passageways for which sampling-based methods are not sufficient, or provides information that a collision-free path does not exist. With such information, it is possible to quit the motion planning computation if no solution exists and its further search would be a loss of time. Otherwise, the method continues to sample the space with sampling-based method (a RRT algorithm) until a solution is found or the maximum number of iterations is reached. The method was tested on real biomolecular data - dcp protein - and on artificial data (to show the superiority of the proposed solution on better-imagined data) with positive results.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science 22nd International Conference on Computational Science, ICCS 2022
ISBN
978-3-031-08750-9
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
14
Strana od-do
219-232
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
London
Datum konání akce
21. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—