Non-uniform quaternion spline interpolation in vehicle kinematics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966692" target="_blank" >RIV/49777513:23520/22:43966692 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11025/50366" target="_blank" >http://hdl.handle.net/11025/50366</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Non-uniform quaternion spline interpolation in vehicle kinematics
Popis výsledku v původním jazyce
Interpolation plays an important role in nowadays world. The main areas where interpolation is applied are robotics, automotive, medicine, biology etc. In this work we consider the application of B-splines (cumulative) for the non-uniform interpolation of quaternions. This requires to overcome some difficulties. Firstly it is necessary to compute control points to fulfil the basic interpolation property. Second problem is hidden in non-uniformity of data points as formulas available for quaternion spline interpolation generally consider uniformly distributed points. The last problem lies in discretization: to achieve desired maximum error of the interpolation we have to choose the proper density of interpolation points. The proposed theory was implemented in the in-house computational tool and it was used for the interpolation of suspension kinematics in automotive applications.
Název v anglickém jazyce
Non-uniform quaternion spline interpolation in vehicle kinematics
Popis výsledku anglicky
Interpolation plays an important role in nowadays world. The main areas where interpolation is applied are robotics, automotive, medicine, biology etc. In this work we consider the application of B-splines (cumulative) for the non-uniform interpolation of quaternions. This requires to overcome some difficulties. Firstly it is necessary to compute control points to fulfil the basic interpolation property. Second problem is hidden in non-uniformity of data points as formulas available for quaternion spline interpolation generally consider uniformly distributed points. The last problem lies in discretization: to achieve desired maximum error of the interpolation we have to choose the proper density of interpolation points. The proposed theory was implemented in the in-house computational tool and it was used for the interpolation of suspension kinematics in automotive applications.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů