VinVL+L: Enriching Visual Representation with Location Context in VQA
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43968165" target="_blank" >RIV/49777513:23520/23:43968165 - isvavai.cz</a>
Výsledek na webu
<a href="https://ceur-ws.org/Vol-3349/paper4.pdf" target="_blank" >https://ceur-ws.org/Vol-3349/paper4.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
VinVL+L: Enriching Visual Representation with Location Context in VQA
Popis výsledku v původním jazyce
In this paper, we describe a novel method - VinVL+L - that enriches the visual representations (i.e. object tags and region features) of the State-of-the-Art Vision and Language (VL) method - VinVL - with Location information. To verify the importance of such metadata for VL models, we (i) trained a Swin-B model on the Places365 dataset and obtained additional sets of visual and tag features; both were made public to allow reproducibility and further experiments, (ii) did an architectural update to the existing VinVL method to include the new feature sets, and (iii) provide a qualitative and quantitative evaluation. By including just binary location metadata, the VinVL+L method provides incremental improvement to the State-of-the-Art VinVL in Visual Question Answering (VQA). The VinVL+L achieved an accuracy of 64.85% and increased the performance by +0.32% in terms of accuracy on the GQA dataset; the statistical significance of the new representations is verified via Approximate Randomization. The code and newly generated sets of features are available at https://github.com/vyskocj/VinVL-L.
Název v anglickém jazyce
VinVL+L: Enriching Visual Representation with Location Context in VQA
Popis výsledku anglicky
In this paper, we describe a novel method - VinVL+L - that enriches the visual representations (i.e. object tags and region features) of the State-of-the-Art Vision and Language (VL) method - VinVL - with Location information. To verify the importance of such metadata for VL models, we (i) trained a Swin-B model on the Places365 dataset and obtained additional sets of visual and tag features; both were made public to allow reproducibility and further experiments, (ii) did an architectural update to the existing VinVL method to include the new feature sets, and (iii) provide a qualitative and quantitative evaluation. By including just binary location metadata, the VinVL+L method provides incremental improvement to the State-of-the-Art VinVL in Visual Question Answering (VQA). The VinVL+L achieved an accuracy of 64.85% and increased the performance by +0.32% in terms of accuracy on the GQA dataset; the statistical significance of the new representations is verified via Approximate Randomization. The code and newly generated sets of features are available at https://github.com/vyskocj/VinVL-L.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CEUR Workshop Proceedings
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
9
Strana od-do
1-9
Název nakladatele
CEUR-WS
Místo vydání
Aachen
Místo konání akce
Kremže, Rakousko
Datum konání akce
15. 2. 2023
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—