Local Reflectional Symmetry Detection in Point Clouds Using a Simple PCA-Based Shape Descriptor
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43968408" target="_blank" >RIV/49777513:23520/23:43968408 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scitepress.org/Papers/2023/116222/116222.pdf" target="_blank" >https://www.scitepress.org/Papers/2023/116222/116222.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0011622200003417" target="_blank" >10.5220/0011622200003417</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Local Reflectional Symmetry Detection in Point Clouds Using a Simple PCA-Based Shape Descriptor
Popis výsledku v původním jazyce
Symmetry is a commonly occurring feature in real world objects and its knowledge can be useful in various applications. Different types of symmetries exist but we only consider the reflectional symmetry which is probably the most common one. Multiple methods exist that aim to find the global reflectional symmetry of a given 3D object and although this task on its own is not easy, finding symmetries of objects that are merely parts of larger scenes is much more difficult. Such symmetries are often called local symmetries and they commonly occur in real world 3D scans of whole scenes or larger areas. In this paper we propose a simple PCA-based local shape descriptor that can be easily used for potential symmetric point matching in 3D point clouds and, building on previous work, we present a new method for detecting local reflectional symmetries in 3D point clouds which combines the PCA descriptor point matching with the density peak location algorithm. We show the results of our method for several real 3D scanned scenes and demonstrate its computational efficiency and robustness to noise.
Název v anglickém jazyce
Local Reflectional Symmetry Detection in Point Clouds Using a Simple PCA-Based Shape Descriptor
Popis výsledku anglicky
Symmetry is a commonly occurring feature in real world objects and its knowledge can be useful in various applications. Different types of symmetries exist but we only consider the reflectional symmetry which is probably the most common one. Multiple methods exist that aim to find the global reflectional symmetry of a given 3D object and although this task on its own is not easy, finding symmetries of objects that are merely parts of larger scenes is much more difficult. Such symmetries are often called local symmetries and they commonly occur in real world 3D scans of whole scenes or larger areas. In this paper we propose a simple PCA-based local shape descriptor that can be easily used for potential symmetric point matching in 3D point clouds and, building on previous work, we present a new method for detecting local reflectional symmetries in 3D point clouds which combines the PCA descriptor point matching with the density peak location algorithm. We show the results of our method for several real 3D scanned scenes and demonstrate its computational efficiency and robustness to noise.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GF21-08009K" target="_blank" >GF21-08009K: Zobecněné symetrie a ekvivalence geometrických dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - GRAPP
ISBN
978-989-758-634-7
ISSN
—
e-ISSN
2184-4321
Počet stran výsledku
12
Strana od-do
52-63
Název nakladatele
Scitipress digital library
Místo vydání
Setúbal
Místo konání akce
Lisabon, Portugalsko
Datum konání akce
19. 2. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—