A Quest for Simple and Unified Proofs in Regularity Theory: Perturbation Stability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43970880" target="_blank" >RIV/49777513:23520/23:43970880 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.heldermann.de/JCA/JCA30/JCA303/jca30037.htm" target="_blank" >https://www.heldermann.de/JCA/JCA30/JCA303/jca30037.htm</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Quest for Simple and Unified Proofs in Regularity Theory: Perturbation Stability
Popis výsledku v původním jazyce
Ioffe’s criterion and various reformulations of it have become a standard tool in proving theorems guaranteeing metric regularity of a (set-valued) mapping. First, we demonstrate that one should always use directly the so-called general criterion which follows, for example, from Ekeland’s variational principle, and that there is no need to make a detour through the slope-based consequences of this general statement. Second, we argue that when proving perturbation stability results, in the spirit of Lyusternik-Graves theorem, there is no need to employ the concept of a lower semicontinuous envelope even in the case of an incomplete target space. The gist is to use the “correct” function to which Ekeland’s variational principle is applied; namely, the distance function to the graph of the set-valued mapping under consideration. This approach originates in the notion of graphical regularity introduced by L. Thibault, which is equivalent to the property of metric regularity. Our criteria cover also both metric subregularity and metric semiregularity, which are weaker properties obtained by fixing one of the points in the definition of metric regularity.
Název v anglickém jazyce
A Quest for Simple and Unified Proofs in Regularity Theory: Perturbation Stability
Popis výsledku anglicky
Ioffe’s criterion and various reformulations of it have become a standard tool in proving theorems guaranteeing metric regularity of a (set-valued) mapping. First, we demonstrate that one should always use directly the so-called general criterion which follows, for example, from Ekeland’s variational principle, and that there is no need to make a detour through the slope-based consequences of this general statement. Second, we argue that when proving perturbation stability results, in the spirit of Lyusternik-Graves theorem, there is no need to employ the concept of a lower semicontinuous envelope even in the case of an incomplete target space. The gist is to use the “correct” function to which Ekeland’s variational principle is applied; namely, the distance function to the graph of the set-valued mapping under consideration. This approach originates in the notion of graphical regularity introduced by L. Thibault, which is equivalent to the property of metric regularity. Our criteria cover also both metric subregularity and metric semiregularity, which are weaker properties obtained by fixing one of the points in the definition of metric regularity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF20-11164L" target="_blank" >GF20-11164L: Regularita zobrazení a aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF CONVEX ANALYSIS
ISSN
0944-6532
e-ISSN
0944-6532
Svazek periodika
30
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
22
Strana od-do
771-792
Kód UT WoS článku
001115506800002
EID výsledku v databázi Scopus
2-s2.0-85174290108