Effect of magnetic field on reverse discharge ignition in bipolar HiPIMS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43972642" target="_blank" >RIV/49777513:23520/24:43972642 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of magnetic field on reverse discharge ignition in bipolar HiPIMS
Popis výsledku v původním jazyce
The phenomenon of reverse discharge (RD) in bipolar HiPIMS occurs when a sufficiently long positive pulse is applied, forming a double-layer structure. This double-layer is created by secondary electron emission caused by Ar+ ions hitting grounded surfaces, along with the magnetic mirror effect from the magnetron’s magnetic field. The magnetic field traps electrons in the bulk plasma, preventing them from reaching the magnetron and causing them to accumulate, eventually leading to RD ignition. The configuration of the magnetic field plays a crucial role in influencing the plasma potential distribution and the occurrence of RD. Experiments with a Ti target revealed that RD ignition can be detected by monitoring floating potentials with a wire probe. A balanced magnetic field causes RD to ignite sooner, while an unbalanced field delays or prevents it. RD can be managed by adjusting the magnetic field and using shorter positive pulses. This study underscores the impact of magnetic field configuration on RD during bipolar HiPIMS discharge.
Název v anglickém jazyce
Effect of magnetic field on reverse discharge ignition in bipolar HiPIMS
Popis výsledku anglicky
The phenomenon of reverse discharge (RD) in bipolar HiPIMS occurs when a sufficiently long positive pulse is applied, forming a double-layer structure. This double-layer is created by secondary electron emission caused by Ar+ ions hitting grounded surfaces, along with the magnetic mirror effect from the magnetron’s magnetic field. The magnetic field traps electrons in the bulk plasma, preventing them from reaching the magnetron and causing them to accumulate, eventually leading to RD ignition. The configuration of the magnetic field plays a crucial role in influencing the plasma potential distribution and the occurrence of RD. Experiments with a Ti target revealed that RD ignition can be detected by monitoring floating potentials with a wire probe. A balanced magnetic field causes RD to ignite sooner, while an unbalanced field delays or prevents it. RD can be managed by adjusting the magnetic field and using shorter positive pulses. This study underscores the impact of magnetic field configuration on RD during bipolar HiPIMS discharge.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů