Research on defect detection method of powder metallurgy gear based on machine vision
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12220%2F21%3A43903135" target="_blank" >RIV/60076658:12220/21:43903135 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00138-021-01177-7" target="_blank" >https://link.springer.com/article/10.1007/s00138-021-01177-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00138-021-01177-7" target="_blank" >10.1007/s00138-021-01177-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Research on defect detection method of powder metallurgy gear based on machine vision
Popis výsledku v původním jazyce
Powder metallurgy gears are often accompanied by broken teeth, abrasion, scratches and crack defects. In order to eliminate the defective gears in gear production and improve the yield of gears, this paper presents an improved GA-PSO algorithm, called the SHGA-PSO algorithm. Firstly, the gear images were preprocessed by bilateral filtering, and the images were segmented by the Sobel operator. Then, the geometrical shape, texture feature and color features of the sample were extracted. Next, the BP neural network was reconstructed and SHGA-PSO algorithm was used optimize its structure and weights. Finally, four different gear defect samples were brought into the neural network for calculation, and the performance of the SHGA-PSO algorithm was compared with the GA, PSO and GA-PSO algorithms. Compared with GA-BP algorithm, PSO-BP algorithm, and GA-PSO-BP algorithm, the defect diagnosis of SHGA-PSO-BP algorithm not only enhanced generalization ability, but also improved recognition accuracy.
Název v anglickém jazyce
Research on defect detection method of powder metallurgy gear based on machine vision
Popis výsledku anglicky
Powder metallurgy gears are often accompanied by broken teeth, abrasion, scratches and crack defects. In order to eliminate the defective gears in gear production and improve the yield of gears, this paper presents an improved GA-PSO algorithm, called the SHGA-PSO algorithm. Firstly, the gear images were preprocessed by bilateral filtering, and the images were segmented by the Sobel operator. Then, the geometrical shape, texture feature and color features of the sample were extracted. Next, the BP neural network was reconstructed and SHGA-PSO algorithm was used optimize its structure and weights. Finally, four different gear defect samples were brought into the neural network for calculation, and the performance of the SHGA-PSO algorithm was compared with the GA, PSO and GA-PSO algorithms. Compared with GA-BP algorithm, PSO-BP algorithm, and GA-PSO-BP algorithm, the defect diagnosis of SHGA-PSO-BP algorithm not only enhanced generalization ability, but also improved recognition accuracy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Machine Vision and Applications
ISSN
0932-8092
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
51
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000622733900001
EID výsledku v databázi Scopus
—