USING CHEMICAL REACTION NETWORK THEORY TO SHOW STABILITY OF DISTRIBUTIONAL DYNAMICS IN GAME THEORY
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F22%3A43904906" target="_blank" >RIV/60076658:12310/22:43904906 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aimsciences.org/article/doi/10.3934/jdg.2021030" target="_blank" >https://www.aimsciences.org/article/doi/10.3934/jdg.2021030</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/jdg.2021030" target="_blank" >10.3934/jdg.2021030</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
USING CHEMICAL REACTION NETWORK THEORY TO SHOW STABILITY OF DISTRIBUTIONAL DYNAMICS IN GAME THEORY
Popis výsledku v původním jazyce
This article shows how to apply results of chemical reaction network theory (CRNT) to prove uniqueness and stability of a positive equilibrium for pairs/groups distributional dynamics that arise in game theoretic models. Evolutionary game theory assumes that individuals accrue their Fitness through interactions with other individuals. When there are two or more different strategies in the population, this theory assumes that pairs (groups) are formed instantaneously and randomly so that the corresponding pairs (groups) distribution is described by the Hardy-Weinberg (binomial) distribution. If interactions times are phenotype dependent the Hardy-Weinberg distribution does not apply. Even if it becomes impossible to calculate the pairs/groups distribution analytically we show that CRNT is a general tool that is very useful to prove not only existence of the equilibrium, but also its stability. In this article, we apply CRNT to pair formation model that arises in two player games (e.g., Hawk-Dove, Prisoner's Dilemma game), to group formation that arises, e.g., in Public Goods Game, and to distribution of a single population in patchy environments. We also show by generalizing the Battle of the Sexes game that the methodology does not always apply. © 2022, Journal of Dynamics and Games. All Rights Reserved.
Název v anglickém jazyce
USING CHEMICAL REACTION NETWORK THEORY TO SHOW STABILITY OF DISTRIBUTIONAL DYNAMICS IN GAME THEORY
Popis výsledku anglicky
This article shows how to apply results of chemical reaction network theory (CRNT) to prove uniqueness and stability of a positive equilibrium for pairs/groups distributional dynamics that arise in game theoretic models. Evolutionary game theory assumes that individuals accrue their Fitness through interactions with other individuals. When there are two or more different strategies in the population, this theory assumes that pairs (groups) are formed instantaneously and randomly so that the corresponding pairs (groups) distribution is described by the Hardy-Weinberg (binomial) distribution. If interactions times are phenotype dependent the Hardy-Weinberg distribution does not apply. Even if it becomes impossible to calculate the pairs/groups distribution analytically we show that CRNT is a general tool that is very useful to prove not only existence of the equilibrium, but also its stability. In this article, we apply CRNT to pair formation model that arises in two player games (e.g., Hawk-Dove, Prisoner's Dilemma game), to group formation that arises, e.g., in Public Goods Game, and to distribution of a single population in patchy environments. We also show by generalizing the Battle of the Sexes game that the methodology does not always apply. © 2022, Journal of Dynamics and Games. All Rights Reserved.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Dynamics and Games
ISSN
2164-6074
e-ISSN
2164-6074
Svazek periodika
9
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
351-371
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85141746052