Beyond replicator dynamics: From frequency to density dependent models of evolutionary games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F18%3A43897500" target="_blank" >RIV/60076658:12310/18:43897500 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60077344:_____/18:00491945
Výsledek na webu
<a href="https://reader.elsevier.com/reader/sd/pii/S0022519318303163?token=23334414DDC132F38F473C7631EE3C23926A115A4098CC6AEA746FDD7353A27D9555A4F15494731C1DE9DA8FF9BFB611" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0022519318303163?token=23334414DDC132F38F473C7631EE3C23926A115A4098CC6AEA746FDD7353A27D9555A4F15494731C1DE9DA8FF9BFB611</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jtbi.2018.07.003" target="_blank" >10.1016/j.jtbi.2018.07.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Beyond replicator dynamics: From frequency to density dependent models of evolutionary games
Popis výsledku v původním jazyce
Game theoretic models of evolution such as the Hawk-Dove game assume that individuals gain fitness (which is a proxy of the per capita population growth rate) in pair-wise contests only. These models assume that the equilibrium distribution of phenotypes involved (e.g., Hawks and Doves) in the population is given by the Hardy-Weinberg law, which is based on instantaneous, random pair formation. On the other hand, models of population dynamics do not consider pairs, newborns are produced by singles, and interactions between phenotypes or species are described by the mass action principle. This article links game theoretic and population approaches. It shows that combining distribution dynamics with population dynamics can lead to stable coexistence of Hawk and Dove population numbers in models that do not assume a priori that fitness is negative density dependent. Our analysis shows clearly that the interior Nash equilibrium of the Hawk and Dove model depends both on population size and on interaction times between different phenotypes in the population. This raises the question of the applicability of classic evolutionary game theory that requires all interactions take the same amount of time and that all single individuals have the same payoff per unit of time, to real populations. Furthermore, by separating individual fitness into birth and death effects on singles and pairs, it is shown that stable coexistence in these models depends on the time-scale of the distribution dynamics relative to the population dynamics. When explicit density-dependent fitness is included through competition over a limited resource, the combined dynamics of the Hawk-Dove model often lead to Dove extinction no matter how costly fighting is for Hawk pairs. (C) 2018 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Beyond replicator dynamics: From frequency to density dependent models of evolutionary games
Popis výsledku anglicky
Game theoretic models of evolution such as the Hawk-Dove game assume that individuals gain fitness (which is a proxy of the per capita population growth rate) in pair-wise contests only. These models assume that the equilibrium distribution of phenotypes involved (e.g., Hawks and Doves) in the population is given by the Hardy-Weinberg law, which is based on instantaneous, random pair formation. On the other hand, models of population dynamics do not consider pairs, newborns are produced by singles, and interactions between phenotypes or species are described by the mass action principle. This article links game theoretic and population approaches. It shows that combining distribution dynamics with population dynamics can lead to stable coexistence of Hawk and Dove population numbers in models that do not assume a priori that fitness is negative density dependent. Our analysis shows clearly that the interior Nash equilibrium of the Hawk and Dove model depends both on population size and on interaction times between different phenotypes in the population. This raises the question of the applicability of classic evolutionary game theory that requires all interactions take the same amount of time and that all single individuals have the same payoff per unit of time, to real populations. Furthermore, by separating individual fitness into birth and death effects on singles and pairs, it is shown that stable coexistence in these models depends on the time-scale of the distribution dynamics relative to the population dynamics. When explicit density-dependent fitness is included through competition over a limited resource, the combined dynamics of the Hawk-Dove model often lead to Dove extinction no matter how costly fighting is for Hawk pairs. (C) 2018 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Theoretical Biology
ISSN
0022-5193
e-ISSN
—
Svazek periodika
455
Číslo periodika v rámci svazku
OCT 14 2018
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
232-248
Kód UT WoS článku
000444361100024
EID výsledku v databázi Scopus
2-s2.0-85050849587