Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bimatrix games that include interaction times alter the evolutionary outcome: The Owner-Intruder game

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F19%3A00495257" target="_blank" >RIV/60077344:_____/19:00495257 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60076658:12310/19:43899375

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0022519318305095?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022519318305095?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jtbi.2018.10.033" target="_blank" >10.1016/j.jtbi.2018.10.033</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bimatrix games that include interaction times alter the evolutionary outcome: The Owner-Intruder game

  • Popis výsledku v původním jazyce

    Classic bimatrix games, that are based on pair-wise interactions between two opponents in two different roles, do not consider the effect that interaction duration has on payoffs. However, interactions between different strategies often take different amounts of time. In this article, we further develop a new approach to an old idea that opportunity costs lost while engaged in an interaction affect individual fitness. We consider two scenarios: (i) individuals pair instantaneously so that there are no searchers, and (ii) searching for a partner takes positive time and populations consist of a mixture of singles and pairs. We describe pair dynamics and calculate fitnesses of each strategy for a two-strategy bimatrix game that includes interaction times. Assuming that distribution of pairs (and singles) evolves on a faster time scale than evolutionary dynamics described by the replicator equation, we analyze the Nash equilibria (NE) of the time-constrained game. This general approach is then applied to the Owner--Intruder bimatrix game where the two strategies are Hawk and Dove in both roles. While the classic Owner--Intruder game has at most one interior NE and it is unstable with respect to replicator dynamics, differences in pair duration change this prediction in that up to four interior NE may exist with their stability depending on whether pairing is instantaneous or not. The classic game has either one (all Hawk) or two ((Hawk,Dove) and (Dove,Hawk)) stable boundary NE. When interaction times are included, other combinations of stable boundary NE are possible. For example, (Dove,Dove), (Dove,Hawk), or (Hawk,Dove) can be the unique (stable) NE if interaction time between two Doves is short compared to some other interactions involving Doves.

  • Název v anglickém jazyce

    Bimatrix games that include interaction times alter the evolutionary outcome: The Owner-Intruder game

  • Popis výsledku anglicky

    Classic bimatrix games, that are based on pair-wise interactions between two opponents in two different roles, do not consider the effect that interaction duration has on payoffs. However, interactions between different strategies often take different amounts of time. In this article, we further develop a new approach to an old idea that opportunity costs lost while engaged in an interaction affect individual fitness. We consider two scenarios: (i) individuals pair instantaneously so that there are no searchers, and (ii) searching for a partner takes positive time and populations consist of a mixture of singles and pairs. We describe pair dynamics and calculate fitnesses of each strategy for a two-strategy bimatrix game that includes interaction times. Assuming that distribution of pairs (and singles) evolves on a faster time scale than evolutionary dynamics described by the replicator equation, we analyze the Nash equilibria (NE) of the time-constrained game. This general approach is then applied to the Owner--Intruder bimatrix game where the two strategies are Hawk and Dove in both roles. While the classic Owner--Intruder game has at most one interior NE and it is unstable with respect to replicator dynamics, differences in pair duration change this prediction in that up to four interior NE may exist with their stability depending on whether pairing is instantaneous or not. The classic game has either one (all Hawk) or two ((Hawk,Dove) and (Dove,Hawk)) stable boundary NE. When interaction times are included, other combinations of stable boundary NE are possible. For example, (Dove,Dove), (Dove,Hawk), or (Hawk,Dove) can be the unique (stable) NE if interaction time between two Doves is short compared to some other interactions involving Doves.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Theoretical Biology

  • ISSN

    0022-5193

  • e-ISSN

  • Svazek periodika

    460

  • Číslo periodika v rámci svazku

    JAN 07

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

    262-273

  • Kód UT WoS článku

    000451107700025

  • EID výsledku v databázi Scopus

    2-s2.0-85055502480