Bimatrix games that include interaction times alter the evolutionary outcome: The Owner-Intruder game
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F19%3A00495257" target="_blank" >RIV/60077344:_____/19:00495257 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60076658:12310/19:43899375
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022519318305095?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022519318305095?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jtbi.2018.10.033" target="_blank" >10.1016/j.jtbi.2018.10.033</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bimatrix games that include interaction times alter the evolutionary outcome: The Owner-Intruder game
Popis výsledku v původním jazyce
Classic bimatrix games, that are based on pair-wise interactions between two opponents in two different roles, do not consider the effect that interaction duration has on payoffs. However, interactions between different strategies often take different amounts of time. In this article, we further develop a new approach to an old idea that opportunity costs lost while engaged in an interaction affect individual fitness. We consider two scenarios: (i) individuals pair instantaneously so that there are no searchers, and (ii) searching for a partner takes positive time and populations consist of a mixture of singles and pairs. We describe pair dynamics and calculate fitnesses of each strategy for a two-strategy bimatrix game that includes interaction times. Assuming that distribution of pairs (and singles) evolves on a faster time scale than evolutionary dynamics described by the replicator equation, we analyze the Nash equilibria (NE) of the time-constrained game. This general approach is then applied to the Owner--Intruder bimatrix game where the two strategies are Hawk and Dove in both roles. While the classic Owner--Intruder game has at most one interior NE and it is unstable with respect to replicator dynamics, differences in pair duration change this prediction in that up to four interior NE may exist with their stability depending on whether pairing is instantaneous or not. The classic game has either one (all Hawk) or two ((Hawk,Dove) and (Dove,Hawk)) stable boundary NE. When interaction times are included, other combinations of stable boundary NE are possible. For example, (Dove,Dove), (Dove,Hawk), or (Hawk,Dove) can be the unique (stable) NE if interaction time between two Doves is short compared to some other interactions involving Doves.
Název v anglickém jazyce
Bimatrix games that include interaction times alter the evolutionary outcome: The Owner-Intruder game
Popis výsledku anglicky
Classic bimatrix games, that are based on pair-wise interactions between two opponents in two different roles, do not consider the effect that interaction duration has on payoffs. However, interactions between different strategies often take different amounts of time. In this article, we further develop a new approach to an old idea that opportunity costs lost while engaged in an interaction affect individual fitness. We consider two scenarios: (i) individuals pair instantaneously so that there are no searchers, and (ii) searching for a partner takes positive time and populations consist of a mixture of singles and pairs. We describe pair dynamics and calculate fitnesses of each strategy for a two-strategy bimatrix game that includes interaction times. Assuming that distribution of pairs (and singles) evolves on a faster time scale than evolutionary dynamics described by the replicator equation, we analyze the Nash equilibria (NE) of the time-constrained game. This general approach is then applied to the Owner--Intruder bimatrix game where the two strategies are Hawk and Dove in both roles. While the classic Owner--Intruder game has at most one interior NE and it is unstable with respect to replicator dynamics, differences in pair duration change this prediction in that up to four interior NE may exist with their stability depending on whether pairing is instantaneous or not. The classic game has either one (all Hawk) or two ((Hawk,Dove) and (Dove,Hawk)) stable boundary NE. When interaction times are included, other combinations of stable boundary NE are possible. For example, (Dove,Dove), (Dove,Hawk), or (Hawk,Dove) can be the unique (stable) NE if interaction time between two Doves is short compared to some other interactions involving Doves.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Theoretical Biology
ISSN
0022-5193
e-ISSN
—
Svazek periodika
460
Číslo periodika v rámci svazku
JAN 07
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
262-273
Kód UT WoS článku
000451107700025
EID výsledku v databázi Scopus
2-s2.0-85055502480