Internet of things-based deeply proficient monitoring and protection system for crop field
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F22%3A43905004" target="_blank" >RIV/60076658:12310/22:43905004 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1111/exsy.12876" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/exsy.12876</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/exsy.12876" target="_blank" >10.1111/exsy.12876</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Internet of things-based deeply proficient monitoring and protection system for crop field
Popis výsledku v původním jazyce
The production rate of crops is significantly declining due to natural disasters, animal interventions and plant diseases. Internet of things (IoT) and wireless sensor networks are widely applied in crop field monitoring systems to observe the quality of each plant and the field. This work proposes IoT based crop field protection system (ICFPS) that monitors and protects the crop fields from animal intrusions. This proposed system uses ultrasonic sensors, hyperspectral cameras, voice recorded buzzers and other agriculture sensors to protect the entire crop field. This system uses numerous sensor nodes and cameras for gathering field objects (images and environmental objects). The proposed ICFPS creates deep learning techniques such as recurrent convolutional neural networks (RCNN) and recurrent generative adversarial neural networks (RGAN) for feature extraction, disease detection and field data monitoring practices. This proposed work develops a smart city-based agriculture system using cognitive learning approaches. This proposed system analyses crop field data and provide automatic alerts regarding animal interferences and crop diseases. Moreover, the cognitive smart crop field system observes various field conditions which support for good production rate. In this system, sensors and camera-enabled agriculture drones are coordinated with each other to collect the field data regularly. At the same time, the proposed work trains the RCNN and RGAN units using effective crop field datasets to attain realistic decisions within minimal time intervals. The experiment details and results show the proposed ICFPS works with 8%-10% of more classification accuracy than existing systems.
Název v anglickém jazyce
Internet of things-based deeply proficient monitoring and protection system for crop field
Popis výsledku anglicky
The production rate of crops is significantly declining due to natural disasters, animal interventions and plant diseases. Internet of things (IoT) and wireless sensor networks are widely applied in crop field monitoring systems to observe the quality of each plant and the field. This work proposes IoT based crop field protection system (ICFPS) that monitors and protects the crop fields from animal intrusions. This proposed system uses ultrasonic sensors, hyperspectral cameras, voice recorded buzzers and other agriculture sensors to protect the entire crop field. This system uses numerous sensor nodes and cameras for gathering field objects (images and environmental objects). The proposed ICFPS creates deep learning techniques such as recurrent convolutional neural networks (RCNN) and recurrent generative adversarial neural networks (RGAN) for feature extraction, disease detection and field data monitoring practices. This proposed work develops a smart city-based agriculture system using cognitive learning approaches. This proposed system analyses crop field data and provide automatic alerts regarding animal interferences and crop diseases. Moreover, the cognitive smart crop field system observes various field conditions which support for good production rate. In this system, sensors and camera-enabled agriculture drones are coordinated with each other to collect the field data regularly. At the same time, the proposed work trains the RCNN and RGAN units using effective crop field datasets to attain realistic decisions within minimal time intervals. The experiment details and results show the proposed ICFPS works with 8%-10% of more classification accuracy than existing systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert Systems
ISSN
0266-4720
e-ISSN
1468-0394
Svazek periodika
39
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
nestrankovano
Kód UT WoS článku
000720131200001
EID výsledku v databázi Scopus
—