Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Detection of Tomato Leaf Diseases for Agro-Based Industries Using Novel PCA DeepNet

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10252023" target="_blank" >RIV/61989100:27240/23:10252023 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10042407" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10042407</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3244499" target="_blank" >10.1109/ACCESS.2023.3244499</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Detection of Tomato Leaf Diseases for Agro-Based Industries Using Novel PCA DeepNet

  • Popis výsledku v původním jazyce

    The advancement of Deep Learning and Computer Vision in the field of agriculture has been found to be an effective tool in detecting harmful plant diseases. Classification and detection of healthy and diseased crops play a very crucial role in determining the rate and quality of production. Thus the present work highlights a well-proposed novel method of detecting Tomato leaf diseases using Deep Neural Networks to strengthen agro-based industries. The present novel framework is utilized with a combination of classical Machine Learning model Principal Component Analysis (PCA) and a customized Deep Neural Network which has been named as PCA DeepNet. The hybridized framework also consists of Generative Adversarial Network (GAN) for obtaining a good mixture of datasets. The detection is carried out using the Faster Region-Based Convolutional Neural Network (F-RCNN). The overall work generated a classification accuracy of 99.60% with an average precision of 98.55%; giving a promising Intersection over Union (IOU) score of 0.95 in detection. Thus the presented work outperforms any other reported state-of-the-art. (C) 2013 IEEE.

  • Název v anglickém jazyce

    Detection of Tomato Leaf Diseases for Agro-Based Industries Using Novel PCA DeepNet

  • Popis výsledku anglicky

    The advancement of Deep Learning and Computer Vision in the field of agriculture has been found to be an effective tool in detecting harmful plant diseases. Classification and detection of healthy and diseased crops play a very crucial role in determining the rate and quality of production. Thus the present work highlights a well-proposed novel method of detecting Tomato leaf diseases using Deep Neural Networks to strengthen agro-based industries. The present novel framework is utilized with a combination of classical Machine Learning model Principal Component Analysis (PCA) and a customized Deep Neural Network which has been named as PCA DeepNet. The hybridized framework also consists of Generative Adversarial Network (GAN) for obtaining a good mixture of datasets. The detection is carried out using the Faster Region-Based Convolutional Neural Network (F-RCNN). The overall work generated a classification accuracy of 99.60% with an average precision of 98.55%; giving a promising Intersection over Union (IOU) score of 0.95 in detection. Thus the presented work outperforms any other reported state-of-the-art. (C) 2013 IEEE.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    February

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

    14983-15001

  • Kód UT WoS článku

    000936301600001

  • EID výsledku v databázi Scopus

    2-s2.0-85148952539