Detection of Tomato Leaf Diseases for Agro-Based Industries Using Novel PCA DeepNet
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10252023" target="_blank" >RIV/61989100:27240/23:10252023 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10042407" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10042407</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2023.3244499" target="_blank" >10.1109/ACCESS.2023.3244499</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection of Tomato Leaf Diseases for Agro-Based Industries Using Novel PCA DeepNet
Popis výsledku v původním jazyce
The advancement of Deep Learning and Computer Vision in the field of agriculture has been found to be an effective tool in detecting harmful plant diseases. Classification and detection of healthy and diseased crops play a very crucial role in determining the rate and quality of production. Thus the present work highlights a well-proposed novel method of detecting Tomato leaf diseases using Deep Neural Networks to strengthen agro-based industries. The present novel framework is utilized with a combination of classical Machine Learning model Principal Component Analysis (PCA) and a customized Deep Neural Network which has been named as PCA DeepNet. The hybridized framework also consists of Generative Adversarial Network (GAN) for obtaining a good mixture of datasets. The detection is carried out using the Faster Region-Based Convolutional Neural Network (F-RCNN). The overall work generated a classification accuracy of 99.60% with an average precision of 98.55%; giving a promising Intersection over Union (IOU) score of 0.95 in detection. Thus the presented work outperforms any other reported state-of-the-art. (C) 2013 IEEE.
Název v anglickém jazyce
Detection of Tomato Leaf Diseases for Agro-Based Industries Using Novel PCA DeepNet
Popis výsledku anglicky
The advancement of Deep Learning and Computer Vision in the field of agriculture has been found to be an effective tool in detecting harmful plant diseases. Classification and detection of healthy and diseased crops play a very crucial role in determining the rate and quality of production. Thus the present work highlights a well-proposed novel method of detecting Tomato leaf diseases using Deep Neural Networks to strengthen agro-based industries. The present novel framework is utilized with a combination of classical Machine Learning model Principal Component Analysis (PCA) and a customized Deep Neural Network which has been named as PCA DeepNet. The hybridized framework also consists of Generative Adversarial Network (GAN) for obtaining a good mixture of datasets. The detection is carried out using the Faster Region-Based Convolutional Neural Network (F-RCNN). The overall work generated a classification accuracy of 99.60% with an average precision of 98.55%; giving a promising Intersection over Union (IOU) score of 0.95 in detection. Thus the presented work outperforms any other reported state-of-the-art. (C) 2013 IEEE.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
14983-15001
Kód UT WoS článku
000936301600001
EID výsledku v databázi Scopus
2-s2.0-85148952539