Jacob Steiner's construction of conics revisited
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12410%2F19%3A43900271" target="_blank" >RIV/60076658:12410/19:43900271 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.heldermann.de/JGG/JGG23/JGG232/jgg23018.htm" target="_blank" >http://www.heldermann.de/JGG/JGG23/JGG232/jgg23018.htm</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Jacob Steiner's construction of conics revisited
Popis výsledku v původním jazyce
We aim at presenting material on conics, which can be used to formulate, e.g., GeoGebra problems for high-school and freshmen maths courses at universities. In a (real) projective plane two pencils of lines, which are projectively related, generate, in general, a conic. This fact due to Jakob Steiner [4] allows to construct points of a cocnic given by, e.g., 5 points. Hereby the problem of transfering a given cross-ratio of four lines of the first pencil to the corresponding and uniform way we propose a method, which uses the well-known fact that a projective mapping from one line (or pencil) to another always can be decomposed into a product of perspectivities. By extending the presented graphical methods, we also construct tangents and osculating circles at points of a conic. The calculation following the graphic treatment delivers a parametrisation of conic arcs applicable also for so-called 2nd order biarcs. Even so the topic and its theoretical background is a matter of the 19th century, it is not at all well-known nowadays, as also is stated in [3]. Some of the presented constructions might also be new.
Název v anglickém jazyce
Jacob Steiner's construction of conics revisited
Popis výsledku anglicky
We aim at presenting material on conics, which can be used to formulate, e.g., GeoGebra problems for high-school and freshmen maths courses at universities. In a (real) projective plane two pencils of lines, which are projectively related, generate, in general, a conic. This fact due to Jakob Steiner [4] allows to construct points of a cocnic given by, e.g., 5 points. Hereby the problem of transfering a given cross-ratio of four lines of the first pencil to the corresponding and uniform way we propose a method, which uses the well-known fact that a projective mapping from one line (or pencil) to another always can be decomposed into a product of perspectivities. By extending the presented graphical methods, we also construct tangents and osculating circles at points of a conic. The calculation following the graphic treatment delivers a parametrisation of conic arcs applicable also for so-called 2nd order biarcs. Even so the topic and its theoretical background is a matter of the 19th century, it is not at all well-known nowadays, as also is stated in [3]. Some of the presented constructions might also be new.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal for Geometry and Graphics
ISSN
1433-8157
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
189-199
Kód UT WoS článku
—
EID výsledku v databázi Scopus
999