The use of belief function theory in recommendation based on a similarity diffusion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F19%3A43899879" target="_blank" >RIV/60076658:12510/19:43899879 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The use of belief function theory in recommendation based on a similarity diffusion
Popis výsledku v původním jazyce
At present, recommendation systems are integral part of recommendation systems in e-business. In these systems, collaborative filtering technology is an important method for assessing user preferences by using user feedback data and is widely used. Diffusion-based recommendation based on diffusion phenomenon is an important method in collaborative filtering recommendation for processes that can be modelled by a bipartite network, e.g., processes which can represent behavior between users and e-shops. Diffusion-based recommendation algorithms calculate the similarities between users and make recommendations only regarding implicit feedback but neglect the benefits of explicit feedback which is formed by texts written by users during feedback process next to evaluation by certain amount of points (implicit feedback). These texts can be however a significant element in recommendation systems. This paper proposes a combined diffusion similarity model for the integration of explicit feedback and implicit feedback based on Dempster-Shafer theory. The experimental results show that the proposed solution gives good results compared to other algorithms.
Název v anglickém jazyce
The use of belief function theory in recommendation based on a similarity diffusion
Popis výsledku anglicky
At present, recommendation systems are integral part of recommendation systems in e-business. In these systems, collaborative filtering technology is an important method for assessing user preferences by using user feedback data and is widely used. Diffusion-based recommendation based on diffusion phenomenon is an important method in collaborative filtering recommendation for processes that can be modelled by a bipartite network, e.g., processes which can represent behavior between users and e-shops. Diffusion-based recommendation algorithms calculate the similarities between users and make recommendations only regarding implicit feedback but neglect the benefits of explicit feedback which is formed by texts written by users during feedback process next to evaluation by certain amount of points (implicit feedback). These texts can be however a significant element in recommendation systems. This paper proposes a combined diffusion similarity model for the integration of explicit feedback and implicit feedback based on Dempster-Shafer theory. The experimental results show that the proposed solution gives good results compared to other algorithms.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Conference Proceedings of 37th International Conference on Mathematical Methods in Economics 2019
ISBN
978-80-7394-760-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
356-361
Název nakladatele
University of South Bohemia in České Budějovice, Faculty of Economics
Místo vydání
České Budějovice
Místo konání akce
České Budějovice
Datum konání akce
11. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—