Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F20%3A43900785" target="_blank" >RIV/60076658:12520/20:43900785 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41210/20:79922
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0016706119310493" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0016706119310493</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geoderma.2019.113972" target="_blank" >10.1016/j.geoderma.2019.113972</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon
Popis výsledku v původním jazyce
Effective measurement and management of soil organic carbon (SOC) are essential for ecosystem function and food production. SOC has an important influence on soil properties and soil quality. Conventional SOC analysis is expensive and time-consuming. The development of spectral imaging sensors enables the acquisition of larger amounts of data using cheaper and faster methods. In addition, satellite remote sensing offers the potential to perform surveys more frequently and over larger areas. This research aimed to measure SOC content with colour as an indirect proxy. The measurements of soil colour were made at an agricultural site of the Czech Republic with an inexpensive digital camera and the Sentinel-2 remote sensor. Various soil colour spaces and colour indices derived from the (i) reflectance spectroscopy in the selected wavelengths of the visible (VIS) range (400-700 nm), (ii) RGB digital camera, and (iii) Sentinel-2 visible bands were used to train models for prediction of SOC. For modelling, we used the machine learning method, random forest (RF), and the models were validated with repeated 5-fold cross-validation. For prediction of SOC, the digital camera produced R-2 = 0.85 and FtMSEp = 0.11%, which had higher R-2 and similar RMSEp compared to those obtained from the spectroscopy (R-2 = 0.78 and RMSEp = 0.09%). Sentinel-2 predicted SOC with lower accuracy than other techniques; however, the results were still fair (R-2 = 0.67 and RMSEp = 0.12%) and comparable with other methods. Using a digital camera with simple colour features was efficient. It enabled cheaper and accurate predictions of SOC compared to spectroscopic measurement and Sentinel-2 data.
Název v anglickém jazyce
Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon
Popis výsledku anglicky
Effective measurement and management of soil organic carbon (SOC) are essential for ecosystem function and food production. SOC has an important influence on soil properties and soil quality. Conventional SOC analysis is expensive and time-consuming. The development of spectral imaging sensors enables the acquisition of larger amounts of data using cheaper and faster methods. In addition, satellite remote sensing offers the potential to perform surveys more frequently and over larger areas. This research aimed to measure SOC content with colour as an indirect proxy. The measurements of soil colour were made at an agricultural site of the Czech Republic with an inexpensive digital camera and the Sentinel-2 remote sensor. Various soil colour spaces and colour indices derived from the (i) reflectance spectroscopy in the selected wavelengths of the visible (VIS) range (400-700 nm), (ii) RGB digital camera, and (iii) Sentinel-2 visible bands were used to train models for prediction of SOC. For modelling, we used the machine learning method, random forest (RF), and the models were validated with repeated 5-fold cross-validation. For prediction of SOC, the digital camera produced R-2 = 0.85 and FtMSEp = 0.11%, which had higher R-2 and similar RMSEp compared to those obtained from the spectroscopy (R-2 = 0.78 and RMSEp = 0.09%). Sentinel-2 predicted SOC with lower accuracy than other techniques; however, the results were still fair (R-2 = 0.67 and RMSEp = 0.12%) and comparable with other methods. Using a digital camera with simple colour features was efficient. It enabled cheaper and accurate predictions of SOC compared to spectroscopic measurement and Sentinel-2 data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ18-28126Y" target="_blank" >GJ18-28126Y: Hodnocení kontaminace půdy s využitím hyperspektrálních satelitních dat</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geoderma
ISSN
0016-7061
e-ISSN
—
Svazek periodika
357
Číslo periodika v rámci svazku
neuveden
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000496837300024
EID výsledku v databázi Scopus
2-s2.0-85072164813