Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Modelling of KdV-Soliton through fractional action and emergence of lump waves

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F24%3A00616568" target="_blank" >RIV/60077344:_____/24:00616568 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s12346-024-01141-6" target="_blank" >https://doi.org/10.1007/s12346-024-01141-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s12346-024-01141-6" target="_blank" >10.1007/s12346-024-01141-6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Modelling of KdV-Soliton through fractional action and emergence of lump waves

  • Popis výsledku v původním jazyce

    The fractional calculus of variations is considered today as an important in applied mathematics. It consists of minimizing or maximizing functionals that depend on different types of fractional derivatives and integral operators. This mathematical subject has proved to be relevant because of its motivating implications in describing dissipative and nonconservative physical systems ranging from classical to quantum mechanics and field theories. However, in some complex dynamical systems, the analytic solutions of the consequential fractional Euler-Lagrange equation are tricky to obtain, and, besides, the generalized fractional variational problems require tricky boundary conditions and further properties in order to obtain the necessary optimality conditions of the Euler-Lagrange type for the given problem. Advanced methods in the fractional calculus of variations have been found to be very practical in studying a large number of nonlinear dynamical systems., however, describing some nonlinear wave phenomena, which are of particular relevance in various fields of science, is still not extensively elaborated in literature. In this study, a new action functional based on Kiryakova fractional operators involving the Meijer-G functions is introduced and discussed. This approach was found to be practical to study periodic dampened oscillators exhibiting traveling soliton-like solutions and a family of modified Korteweg-de Vries equations and lumps obtained within the framework of weakly nonlinear dispersive differential equations. We extended our approach to the case of time-fractal Kiryakova fractional-action integral, where a set of time-fractal Korteweg-de Vries equations exhibiting lump-like evanescent wave solutions is obtained. Our approach may be applied to other nonlinear dynamical systems.

  • Název v anglickém jazyce

    Modelling of KdV-Soliton through fractional action and emergence of lump waves

  • Popis výsledku anglicky

    The fractional calculus of variations is considered today as an important in applied mathematics. It consists of minimizing or maximizing functionals that depend on different types of fractional derivatives and integral operators. This mathematical subject has proved to be relevant because of its motivating implications in describing dissipative and nonconservative physical systems ranging from classical to quantum mechanics and field theories. However, in some complex dynamical systems, the analytic solutions of the consequential fractional Euler-Lagrange equation are tricky to obtain, and, besides, the generalized fractional variational problems require tricky boundary conditions and further properties in order to obtain the necessary optimality conditions of the Euler-Lagrange type for the given problem. Advanced methods in the fractional calculus of variations have been found to be very practical in studying a large number of nonlinear dynamical systems., however, describing some nonlinear wave phenomena, which are of particular relevance in various fields of science, is still not extensively elaborated in literature. In this study, a new action functional based on Kiryakova fractional operators involving the Meijer-G functions is introduced and discussed. This approach was found to be practical to study periodic dampened oscillators exhibiting traveling soliton-like solutions and a family of modified Korteweg-de Vries equations and lumps obtained within the framework of weakly nonlinear dispersive differential equations. We extended our approach to the case of time-fractal Kiryakova fractional-action integral, where a set of time-fractal Korteweg-de Vries equations exhibiting lump-like evanescent wave solutions is obtained. Our approach may be applied to other nonlinear dynamical systems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Qualitative Theory of Dynamical Systems

  • ISSN

    1575-5460

  • e-ISSN

    1662-3592

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    UPPL 1

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    50

  • Strana od-do

    298

  • Kód UT WoS článku

    001345467600004

  • EID výsledku v databázi Scopus

    2-s2.0-85208119629