Comparison of Analytical Method and Artificial Neural Network Method for Calculation of Optical Positioning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F19%3A00536897" target="_blank" >RIV/60162694:G43__/19:00536897 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8870123" target="_blank" >https://ieeexplore.ieee.org/document/8870123</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MILTECHS.2019.8870123" target="_blank" >10.1109/MILTECHS.2019.8870123</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of Analytical Method and Artificial Neural Network Method for Calculation of Optical Positioning
Popis výsledku v původním jazyce
This paper compares two methods of passive determination of an object (camera) position, using the optical beacon. The LED light sources as a part of the optical beacon are placed at certain positions to create a specific geometric pattern. With the changes in mutual camera and beacon position, there are also changes in the pattern, which is determined in the camera-captured picture. Due to a change of the camera position against the beacon, there is also a change in the mutual position of the light sources in the image captured by the camera. The first method is based on analytical expression of the beacon range and azimuthal angle in dependence on mutual positions of the light sources in the picture. The second method uses an artificial neural network instead of analytical expression. A description of both methods together with comparison of experimental results are presented in this paper.
Název v anglickém jazyce
Comparison of Analytical Method and Artificial Neural Network Method for Calculation of Optical Positioning
Popis výsledku anglicky
This paper compares two methods of passive determination of an object (camera) position, using the optical beacon. The LED light sources as a part of the optical beacon are placed at certain positions to create a specific geometric pattern. With the changes in mutual camera and beacon position, there are also changes in the pattern, which is determined in the camera-captured picture. Due to a change of the camera position against the beacon, there is also a change in the mutual position of the light sources in the image captured by the camera. The first method is based on analytical expression of the beacon range and azimuthal angle in dependence on mutual positions of the light sources in the picture. The second method uses an artificial neural network instead of analytical expression. A description of both methods together with comparison of experimental results are presented in this paper.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on Military Technologies 2019, (ICMT´19)
ISBN
978-172814593-8
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
8870123
Název nakladatele
Univerzita obrany v Brně
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
30. 5. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—