Even Order Half-Linear Differential Equations with Regularly Varying Coefficients
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F20%3A00555964" target="_blank" >RIV/60162694:G43__/20:00555964 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/8/8/1236" target="_blank" >https://www.mdpi.com/2227-7390/8/8/1236</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8081236" target="_blank" >10.3390/math8081236</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Even Order Half-Linear Differential Equations with Regularly Varying Coefficients
Popis výsledku v původním jazyce
We establish nonoscillation criterion for the even order half-linear differential equation $(-1)^n left(f_n(t)Phileft(x^{(n)}right)right)^{(n)} + sum_{l=1}^n (-1)^{n-l} beta_{n-l}left(f_{n-l}(t)Phileft(x^{(n-l)}right)right)^{(n-l)} = 0text{,}$ where $beta_0,beta_1,hdots,beta_{n-1}$ are real numbers, $n in mathbb{N}$, $Phi(s) = leftlvert s rightrvert^{p-1} mathop{mathrm{sgn}} s$ for $s in mathbb{R}$, $p in (1,infty)$ and $f_{n-l}$ is a regularly varying (at infinity) function of the index $alpha-lp$ for $l = 0,1,hdots,n$ and $alpha in mathbb{R}$. This equation can be understood as a generalization of the even order Euler type half-linear differential equation. We obtain this Euler type equation by rewriting the equation above as follows: the terms $f_n(t)$ and $f_{n-l}(t)$ are replaced by the $t^alpha$ and $t^{alpha-lp}$, respectively. Unlike in other texts dealing with the Euler type equation, in this article an approach based on the theory of regularly varying functions is used. We establish a nonoscillation criterion by utilizing the variational technique.
Název v anglickém jazyce
Even Order Half-Linear Differential Equations with Regularly Varying Coefficients
Popis výsledku anglicky
We establish nonoscillation criterion for the even order half-linear differential equation $(-1)^n left(f_n(t)Phileft(x^{(n)}right)right)^{(n)} + sum_{l=1}^n (-1)^{n-l} beta_{n-l}left(f_{n-l}(t)Phileft(x^{(n-l)}right)right)^{(n-l)} = 0text{,}$ where $beta_0,beta_1,hdots,beta_{n-1}$ are real numbers, $n in mathbb{N}$, $Phi(s) = leftlvert s rightrvert^{p-1} mathop{mathrm{sgn}} s$ for $s in mathbb{R}$, $p in (1,infty)$ and $f_{n-l}$ is a regularly varying (at infinity) function of the index $alpha-lp$ for $l = 0,1,hdots,n$ and $alpha in mathbb{R}$. This equation can be understood as a generalization of the even order Euler type half-linear differential equation. We obtain this Euler type equation by rewriting the equation above as follows: the terms $f_n(t)$ and $f_{n-l}(t)$ are replaced by the $t^alpha$ and $t^{alpha-lp}$, respectively. Unlike in other texts dealing with the Euler type equation, in this article an approach based on the theory of regularly varying functions is used. We establish a nonoscillation criterion by utilizing the variational technique.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Svazek periodika
8
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
11
Strana od-do
1236
Kód UT WoS článku
000568037300001
EID výsledku v databázi Scopus
2-s2.0-85089482483