Pre-Design of Multi-Band Planar Antennas by Artificial Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F24%3A00558955" target="_blank" >RIV/60162694:G43__/24:00558955 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26220/23:PU148289
Výsledek na webu
<a href="https://www.mdpi.com/2079-9292/12/6/1345" target="_blank" >https://www.mdpi.com/2079-9292/12/6/1345</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/electronics12061345" target="_blank" >10.3390/electronics12061345</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pre-Design of Multi-Band Planar Antennas by Artificial Neural Networks
Popis výsledku v původním jazyce
In this communication, artificial neural networks are used to estimate the initial structure of a multiband planar antenna. The neural networks are trained on a set of selected normalized multiband antennas characterized by time-efficient modal analysis with limited accuracy. Using the Deep Learning Toolbox in Matlab, several types of neural networks have been created and trained on the sample planar multiband antennas. In the neural network learning process, suitable network types were selected for the design of these antennas. The trained networks, depending on the desired operating bands, will select the appropriate antenna geometry. This is further optimized using Newton's method in HFSS. The use of the neural pre-design concept speeds up and simplifies the design of multiband planar antennas. The findings presented in this paper will be used to refine and accelerate the design of planar multiband antennas.
Název v anglickém jazyce
Pre-Design of Multi-Band Planar Antennas by Artificial Neural Networks
Popis výsledku anglicky
In this communication, artificial neural networks are used to estimate the initial structure of a multiband planar antenna. The neural networks are trained on a set of selected normalized multiband antennas characterized by time-efficient modal analysis with limited accuracy. Using the Deep Learning Toolbox in Matlab, several types of neural networks have been created and trained on the sample planar multiband antennas. In the neural network learning process, suitable network types were selected for the design of these antennas. The trained networks, depending on the desired operating bands, will select the appropriate antenna geometry. This is further optimized using Newton's method in HFSS. The use of the neural pre-design concept speeds up and simplifies the design of multiband planar antennas. The findings presented in this paper will be used to refine and accelerate the design of planar multiband antennas.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ELECTRONICS
ISSN
2079-9292
e-ISSN
2079-9292
Svazek periodika
12
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
11
Strana od-do
1345
Kód UT WoS článku
000956815500001
EID výsledku v databázi Scopus
—