Enhancing GNSS Software Receiver Robustness Against Jamming with Kalman Filter Predictions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F25%3A00563689" target="_blank" >RIV/60162694:G43__/25:00563689 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10710292" target="_blank" >https://ieeexplore.ieee.org/document/10710292</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/AE61743.2024.10710292" target="_blank" >10.1109/AE61743.2024.10710292</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancing GNSS Software Receiver Robustness Against Jamming with Kalman Filter Predictions
Popis výsledku v původním jazyce
In contemporary society, Global Navigation Satellite System (GNSS) applications have a widespread influence across diverse sectors, shaping various aspects of modern life. From aviation and environmental monitoring to marine navigation, space exploration, mapping, location determination, communication network timing, and military operations, the ubiquity of GPS technology underscores its significance in critical domains. Common challenges associated with GNSS signals include the Doppler effect and signal strength below the thermal noise level, largely stemming from the considerable distances between satellites and receivers and the high-speed motion of satellite transmitters. The Doppler effect induces a frequency shift in the signal, increasing signal processing challenges for receivers. The complexity of these challenges is particularly noticeable in aviation scenarios, given the high velocity of aircraft. Consequently, the resilience of GNSS receivers becomes paramount, necessitating robust operation even under adverse conditions such as signal loss or intentional jamming. This paper focuses on enhancing the resilience of a Software Defined Radio (SDR) GNSS receiver, specifically the FGI-GSRx from the Finnish Geospatial Research Institute. We simulate a GNSS signal outage or intentional jamming by intentionally jamming a transmitted signal to the receiver. To enhance the receiver's resilience, we expand the standard tracking loops with a Kalman Filter (KF). The KF is designed to predict Doppler shift, enabling the receiver to promptly resume the tracking phase upon signal rediscovery, thereby obviating the need for reacquisition. It is worth noting that disrupting the receiver to force it into reacquisition represents a straightforward method of deceiving the target receiver with a false signal, redirecting it onto a different trajectory.
Název v anglickém jazyce
Enhancing GNSS Software Receiver Robustness Against Jamming with Kalman Filter Predictions
Popis výsledku anglicky
In contemporary society, Global Navigation Satellite System (GNSS) applications have a widespread influence across diverse sectors, shaping various aspects of modern life. From aviation and environmental monitoring to marine navigation, space exploration, mapping, location determination, communication network timing, and military operations, the ubiquity of GPS technology underscores its significance in critical domains. Common challenges associated with GNSS signals include the Doppler effect and signal strength below the thermal noise level, largely stemming from the considerable distances between satellites and receivers and the high-speed motion of satellite transmitters. The Doppler effect induces a frequency shift in the signal, increasing signal processing challenges for receivers. The complexity of these challenges is particularly noticeable in aviation scenarios, given the high velocity of aircraft. Consequently, the resilience of GNSS receivers becomes paramount, necessitating robust operation even under adverse conditions such as signal loss or intentional jamming. This paper focuses on enhancing the resilience of a Software Defined Radio (SDR) GNSS receiver, specifically the FGI-GSRx from the Finnish Geospatial Research Institute. We simulate a GNSS signal outage or intentional jamming by intentionally jamming a transmitted signal to the receiver. To enhance the receiver's resilience, we expand the standard tracking loops with a Kalman Filter (KF). The KF is designed to predict Doppler shift, enabling the receiver to promptly resume the tracking phase upon signal rediscovery, thereby obviating the need for reacquisition. It is worth noting that disrupting the receiver to force it into reacquisition represents a straightforward method of deceiving the target receiver with a false signal, redirecting it onto a different trajectory.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Applied Electronics
ISBN
979-8-3503-5073-9
ISSN
1805-9597
e-ISSN
—
Počet stran výsledku
6
Strana od-do
93-98
Název nakladatele
IEEE
Místo vydání
Plzeň
Místo konání akce
Pilsen, CZECH REPUBLIC
Datum konání akce
4. 9. 2024
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
001343037500020