Application of data-mining techniques in customer segmentation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F11%3A51189" target="_blank" >RIV/60460709:41110/11:51189 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of data-mining techniques in customer segmentation
Popis výsledku v původním jazyce
The paper discusses the possibilities of using the various methods of customer segmentation by mining the information in the databases. The data-mining model was constructed from approximately 60 thousand transaction records. Only food records were selected for the analysis. The partial objective of the paper was to examine the possibilities of data preparation such as restructuralization, logarithmic transformation, and dimensionality reduction. The main goal of the paper was to find meaningful patterns in the analyzed data and identify clusters of customers with similar behavior and needs. The segmentation was realized by various data mining techniques as follows: K-means clustering, Two Step clustering, and unsupervized algorithm based on neural networks called Self-Organizing Maps. The quality of results was evaluated by the Silhouette measure, which combines the principles of clusters separation and cohesion. After that the detailed analysis of the final segments was done.
Název v anglickém jazyce
Application of data-mining techniques in customer segmentation
Popis výsledku anglicky
The paper discusses the possibilities of using the various methods of customer segmentation by mining the information in the databases. The data-mining model was constructed from approximately 60 thousand transaction records. Only food records were selected for the analysis. The partial objective of the paper was to examine the possibilities of data preparation such as restructuralization, logarithmic transformation, and dimensionality reduction. The main goal of the paper was to find meaningful patterns in the analyzed data and identify clusters of customers with similar behavior and needs. The segmentation was realized by various data mining techniques as follows: K-means clustering, Two Step clustering, and unsupervized algorithm based on neural networks called Self-Organizing Maps. The quality of results was evaluated by the Silhouette measure, which combines the principles of clusters separation and cohesion. After that the detailed analysis of the final segments was done.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AGRARIAN PERSPECTIVES Proceedings of the 20th International Scientific Conference
ISBN
978-80-213-2196-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
403-408
Název nakladatele
PEF ČZU v Praze
Místo vydání
Prague
Místo konání akce
Praha
Datum konání akce
13. 9. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000338036100043