DIFFERENT VERSIONS OF THE SAVINGS METHOD FOR THE TIME LIMITED VEHICLE ROUTING PROBLEM
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F12%3A55968" target="_blank" >RIV/60460709:41110/12:55968 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DIFFERENT VERSIONS OF THE SAVINGS METHOD FOR THE TIME LIMITED VEHICLE ROUTING PROBLEM
Popis výsledku v původním jazyce
The time limited vehicle routing problem (TLVRP) stems from the vehicle routing problem. The main diff erence is that the routes are paths (not cycles), i.e. vehicles do not return to the central city (or at least we do not observe their way back). Costsare given for the straight routes between each pair of the cities and represent the time necessary for going through. Each path must not exceed a given time limit. The sum of times for all routes is to be minimized. This problem is NP-hard. There are many various possibilities how to design the heuristics (approximation methods) to solve it. One of the ways of how to obtain an approximation method for the TLVRP is to modify the famous savings method by Clark and Wright (1964) for this purpose. In thispaper we suggest several diff erent versions of this method, test them in some instances, and evaluate and mutually compare the results of individual versions.
Název v anglickém jazyce
DIFFERENT VERSIONS OF THE SAVINGS METHOD FOR THE TIME LIMITED VEHICLE ROUTING PROBLEM
Popis výsledku anglicky
The time limited vehicle routing problem (TLVRP) stems from the vehicle routing problem. The main diff erence is that the routes are paths (not cycles), i.e. vehicles do not return to the central city (or at least we do not observe their way back). Costsare given for the straight routes between each pair of the cities and represent the time necessary for going through. Each path must not exceed a given time limit. The sum of times for all routes is to be minimized. This problem is NP-hard. There are many various possibilities how to design the heuristics (approximation methods) to solve it. One of the ways of how to obtain an approximation method for the TLVRP is to modify the famous savings method by Clark and Wright (1964) for this purpose. In thispaper we suggest several diff erent versions of this method, test them in some instances, and evaluate and mutually compare the results of individual versions.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
ISSN
1211-8516
e-ISSN
—
Svazek periodika
LX
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
171-178
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—