Solution of the Time Limited Vehicle Routing Problem by Dif-ferent Approximation Methods Depending on the Number of Necessary Vehicles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F11%3A51203" target="_blank" >RIV/60460709:41110/11:51203 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solution of the Time Limited Vehicle Routing Problem by Dif-ferent Approximation Methods Depending on the Number of Necessary Vehicles
Popis výsledku v původním jazyce
The time limited vehicle routing problem (TLVRP) stems from the vehicle routing problem. The main difference is that the routes are paths (not cycles), i.e. vehicles do not return (or we do not mind how they return) to the central city. Costs are given for the straight routes between each pair of the cities and represent the time neces-sary for going through. Each path must not exceed a given time limit. The sum of time for all routes is to be minimized. For the exact definition see [8]. This problem isNP-hard. One of the possibilities how to solve the TLVRP is to use heuristics (approximation methods), and thus to obtain a sufficiently good solution. In this paper we have chosen three of these approximation methods, test them on some different instances and asses the performance of single heuristics depending on the number of vehicles necessary for currying out the desired transportation and number of cities on single routes.
Název v anglickém jazyce
Solution of the Time Limited Vehicle Routing Problem by Dif-ferent Approximation Methods Depending on the Number of Necessary Vehicles
Popis výsledku anglicky
The time limited vehicle routing problem (TLVRP) stems from the vehicle routing problem. The main difference is that the routes are paths (not cycles), i.e. vehicles do not return (or we do not mind how they return) to the central city. Costs are given for the straight routes between each pair of the cities and represent the time neces-sary for going through. Each path must not exceed a given time limit. The sum of time for all routes is to be minimized. For the exact definition see [8]. This problem isNP-hard. One of the possibilities how to solve the TLVRP is to use heuristics (approximation methods), and thus to obtain a sufficiently good solution. In this paper we have chosen three of these approximation methods, test them on some different instances and asses the performance of single heuristics depending on the number of vehicles necessary for currying out the desired transportation and number of cities on single routes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
29th International Conference on Mathematical Methods in Economics 2011
ISBN
978-80-7431-059-1
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
413-418
Název nakladatele
Professional Publishing
Místo vydání
Praha
Místo konání akce
Janská Dolina
Datum konání akce
6. 9. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—