On Graphical Optimization of Linear Programming Models in the Column Space
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F13%3A63594" target="_blank" >RIV/60460709:41110/13:63594 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
čeština
Název v původním jazyce
On Graphical Optimization of Linear Programming Models in the Column Space
Popis výsledku v původním jazyce
The necessary conditions for representing and solving a linear programming model graphically are well known. The model should contain up to two decision variables (a number of constraints could be unlimited, but finite) or up to two constraints (a numberof decision variables could be unlimited, but finite). In the first case, we solve the model graphically in a so called ?Row Space?, where the axes of the graph represent decision variables. In the other case, we solve the model in a so called ?Column Space?, where the axes represent individual constraints. In this paper, we focus on the optimization of linear programming models in the Column Space. There is a standard procedure to solve it, but it can be used if and only if all cost coefficients in the objective function are positive or zero. We make the procedure more general and show how to carry out the graphical optimization in the Column Space correctly, even if at least one cost coefficient is negative. We also demonstrate the p
Název v anglickém jazyce
On Graphical Optimization of Linear Programming Models in the Column Space
Popis výsledku anglicky
The necessary conditions for representing and solving a linear programming model graphically are well known. The model should contain up to two decision variables (a number of constraints could be unlimited, but finite) or up to two constraints (a numberof decision variables could be unlimited, but finite). In the first case, we solve the model graphically in a so called ?Row Space?, where the axes of the graph represent decision variables. In the other case, we solve the model in a so called ?Column Space?, where the axes represent individual constraints. In this paper, we focus on the optimization of linear programming models in the Column Space. There is a standard procedure to solve it, but it can be used if and only if all cost coefficients in the objective function are positive or zero. We make the procedure more general and show how to carry out the graphical optimization in the Column Space correctly, even if at least one cost coefficient is negative. We also demonstrate the p
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 31st International Conference Mathematical Methods in Economics 2013
ISBN
978-80-87035-76-4
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
89-94
Název nakladatele
College of Polytechnics Jihlava
Místo vydání
Jihlava
Místo konání akce
Jihlava
Datum konání akce
11. 9. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—