Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Risk-sensitive and Mean Variance Optimality in Continuous-time Markov Decision Chains

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00493556" target="_blank" >RIV/67985556:_____/18:00493556 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Risk-sensitive and Mean Variance Optimality in Continuous-time Markov Decision Chains

  • Popis výsledku v původním jazyce

    In this note we consider continuous-time Markov decision processes with finite state and actions spaces where the stream of rewards generated by the Markov processes is evaluated by an exponential utility function with a given risk sensitivitycoefficient (so-called risk-sensitive models). If the risk sensitivity coefficient equals zero (risk-neutral case) we arrive at a standard Markov decision process. Then we can easily obtain necessary and sufficient mean reward optimality conditions and the variability can be evaluated by the mean variance of total expected rewards. For the risk-sensitive case, i.e. if the risk-sensitivity coefficient is non-zero, for a given value of the risk-sensitivity coefficient we establish necessary and sufficient optimality conditions for maximal (or minimal) growth rate of expectation of the exponential utility function, along with mean value of the corresponding certainty equivalent. Recall that in this case along with the total reward also its higher moments are taken into account.

  • Název v anglickém jazyce

    Risk-sensitive and Mean Variance Optimality in Continuous-time Markov Decision Chains

  • Popis výsledku anglicky

    In this note we consider continuous-time Markov decision processes with finite state and actions spaces where the stream of rewards generated by the Markov processes is evaluated by an exponential utility function with a given risk sensitivitycoefficient (so-called risk-sensitive models). If the risk sensitivity coefficient equals zero (risk-neutral case) we arrive at a standard Markov decision process. Then we can easily obtain necessary and sufficient mean reward optimality conditions and the variability can be evaluated by the mean variance of total expected rewards. For the risk-sensitive case, i.e. if the risk-sensitivity coefficient is non-zero, for a given value of the risk-sensitivity coefficient we establish necessary and sufficient optimality conditions for maximal (or minimal) growth rate of expectation of the exponential utility function, along with mean value of the corresponding certainty equivalent. Recall that in this case along with the total reward also its higher moments are taken into account.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    50201 - Economic Theory

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-02739S" target="_blank" >GA18-02739S: Stochastická optimalizace v ekonomických procesech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    36th International Conference Mathematical Methods in Economics

  • ISBN

    978-80-7378-371-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    497-512

  • Název nakladatele

    MatfyzPress

  • Místo vydání

    Praha

  • Místo konání akce

    Jindřichův Hradec

  • Datum konání akce

    12. 9. 2018

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku