Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Central Moments and Risk-Sensitive Optimality in Markov Reward Processes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00583660" target="_blank" >RIV/67985556:_____/21:00583660 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Central Moments and Risk-Sensitive Optimality in Markov Reward Processes

  • Popis výsledku v původním jazyce

    In this note we consider discrete- and continuous-time Markov decision processes with finite state space. There is no doubt that usual optimality criteria examined in the literature on optimization of Markov reward processes, e.g. total discounted or mean reward, may be quite insufficient to select more sophisticated criteria that reflect also the variability-risk features of the problem. In this note we focus on models where the stream of rewards generated by the Markov process is evaluated by an exponential utility function with a given risk sensitivity coefficient (so-called risk-sensitive models).For the risk sensitive case, i.e. if the considered risk-sensitivity coefficient is non-zero, we establish explicit formulas for growth rate of expectation of the exponential utility function. Recall that in this case along with the total reward also it higher moments are taken into account. Using Taylor expansion of the utility function we present explicit formulas for calculating variance a higher central moments of the total reward generated by the |Markov reward process along with its asymptotic behaviour.

  • Název v anglickém jazyce

    Central Moments and Risk-Sensitive Optimality in Markov Reward Processes

  • Popis výsledku anglicky

    In this note we consider discrete- and continuous-time Markov decision processes with finite state space. There is no doubt that usual optimality criteria examined in the literature on optimization of Markov reward processes, e.g. total discounted or mean reward, may be quite insufficient to select more sophisticated criteria that reflect also the variability-risk features of the problem. In this note we focus on models where the stream of rewards generated by the Markov process is evaluated by an exponential utility function with a given risk sensitivity coefficient (so-called risk-sensitive models).For the risk sensitive case, i.e. if the considered risk-sensitivity coefficient is non-zero, we establish explicit formulas for growth rate of expectation of the exponential utility function. Recall that in this case along with the total reward also it higher moments are taken into account. Using Taylor expansion of the utility function we present explicit formulas for calculating variance a higher central moments of the total reward generated by the |Markov reward process along with its asymptotic behaviour.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-02739S" target="_blank" >GA18-02739S: Stochastická optimalizace v ekonomických procesech</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    MME 2021, 39th International Conference on Mathematical Methods in Economics. Conference Proceedings

  • ISBN

    978-80-213-3126-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    446-451

  • Název nakladatele

    Faculty of Economics and Management, Czech University of Life Sciences Prague

  • Místo vydání

    Prague

  • Místo konání akce

    Prague

  • Datum konání akce

    8. 9. 2021

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    000936369700074