Central Moments and Risk-Sensitive Optimality in Markov Reward Processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00583660" target="_blank" >RIV/67985556:_____/21:00583660 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Central Moments and Risk-Sensitive Optimality in Markov Reward Processes
Popis výsledku v původním jazyce
In this note we consider discrete- and continuous-time Markov decision processes with finite state space. There is no doubt that usual optimality criteria examined in the literature on optimization of Markov reward processes, e.g. total discounted or mean reward, may be quite insufficient to select more sophisticated criteria that reflect also the variability-risk features of the problem. In this note we focus on models where the stream of rewards generated by the Markov process is evaluated by an exponential utility function with a given risk sensitivity coefficient (so-called risk-sensitive models).For the risk sensitive case, i.e. if the considered risk-sensitivity coefficient is non-zero, we establish explicit formulas for growth rate of expectation of the exponential utility function. Recall that in this case along with the total reward also it higher moments are taken into account. Using Taylor expansion of the utility function we present explicit formulas for calculating variance a higher central moments of the total reward generated by the |Markov reward process along with its asymptotic behaviour.
Název v anglickém jazyce
Central Moments and Risk-Sensitive Optimality in Markov Reward Processes
Popis výsledku anglicky
In this note we consider discrete- and continuous-time Markov decision processes with finite state space. There is no doubt that usual optimality criteria examined in the literature on optimization of Markov reward processes, e.g. total discounted or mean reward, may be quite insufficient to select more sophisticated criteria that reflect also the variability-risk features of the problem. In this note we focus on models where the stream of rewards generated by the Markov process is evaluated by an exponential utility function with a given risk sensitivity coefficient (so-called risk-sensitive models).For the risk sensitive case, i.e. if the considered risk-sensitivity coefficient is non-zero, we establish explicit formulas for growth rate of expectation of the exponential utility function. Recall that in this case along with the total reward also it higher moments are taken into account. Using Taylor expansion of the utility function we present explicit formulas for calculating variance a higher central moments of the total reward generated by the |Markov reward process along with its asymptotic behaviour.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-02739S" target="_blank" >GA18-02739S: Stochastická optimalizace v ekonomických procesech</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
MME 2021, 39th International Conference on Mathematical Methods in Economics. Conference Proceedings
ISBN
978-80-213-3126-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
446-451
Název nakladatele
Faculty of Economics and Management, Czech University of Life Sciences Prague
Místo vydání
Prague
Místo konání akce
Prague
Datum konání akce
8. 9. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000936369700074