Central Moments and Risk-Sensitive Optimality in Continuous-Time Markov Reward Processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00536251" target="_blank" >RIV/67985556:_____/20:00536251 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Central Moments and Risk-Sensitive Optimality in Continuous-Time Markov Reward Processes
Popis výsledku v původním jazyce
In this note we consider continuous-time Markov decision processes with finite state space where the stream of rewards generated by the Markov processes is evaluated by an exponential utility function with a given risk sensitivity coefficient (so-called risk-sensitive models). For the risk-sensitive case, i.e. if the considered risk-sensitivity coefficient is nonzero, we establish explicit formulas for growth rate of expectation of the exponential utility function. Recall that in this case along with the total reward also its higher moments are taken into account. Using Taylor expansion of the utility function we present explicit formulae for calculating variance and higher central moments of the total reward generated by the Markov reward process along with its asymptotic behavior.
Název v anglickém jazyce
Central Moments and Risk-Sensitive Optimality in Continuous-Time Markov Reward Processes
Popis výsledku anglicky
In this note we consider continuous-time Markov decision processes with finite state space where the stream of rewards generated by the Markov processes is evaluated by an exponential utility function with a given risk sensitivity coefficient (so-called risk-sensitive models). For the risk-sensitive case, i.e. if the considered risk-sensitivity coefficient is nonzero, we establish explicit formulas for growth rate of expectation of the exponential utility function. Recall that in this case along with the total reward also its higher moments are taken into account. Using Taylor expansion of the utility function we present explicit formulae for calculating variance and higher central moments of the total reward generated by the Markov reward process along with its asymptotic behavior.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-02739S" target="_blank" >GA18-02739S: Stochastická optimalizace v ekonomických procesech</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů