Risk-Sensitive and Mean Variance Optimality in Markov Decision Processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F13%3A00399099" target="_blank" >RIV/67985556:_____/13:00399099 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Risk-Sensitive and Mean Variance Optimality in Markov Decision Processes
Popis výsledku v původním jazyce
In this paper we consider unichain Markov decision processes with finite state space and compact actions spaces where the stream of rewards generated by the Markov processes is evaluated by an exponential utility function with a given risk sensitivity coefficient (so-called risk-sensitive models). If the risk sensitivity coefficient equals zero (risk-neutral case) we arrive at a standard Markov decision process. Then we can easily obtain necessary and sufficient mean reward optimality conditions and thevariability can be evaluated by the mean variance of total expected rewards. For the risk-sensitive case we establish necessary and sufficient optimality conditions for maximal (or minimal) growth rate of expectation of the exponential utility function,along with mean value of the corresponding certainty equivalent, that take into account not only the expected values of the total reward but also its higher moments.
Název v anglickém jazyce
Risk-Sensitive and Mean Variance Optimality in Markov Decision Processes
Popis výsledku anglicky
In this paper we consider unichain Markov decision processes with finite state space and compact actions spaces where the stream of rewards generated by the Markov processes is evaluated by an exponential utility function with a given risk sensitivity coefficient (so-called risk-sensitive models). If the risk sensitivity coefficient equals zero (risk-neutral case) we arrive at a standard Markov decision process. Then we can easily obtain necessary and sufficient mean reward optimality conditions and thevariability can be evaluated by the mean variance of total expected rewards. For the risk-sensitive case we establish necessary and sufficient optimality conditions for maximal (or minimal) growth rate of expectation of the exponential utility function,along with mean value of the corresponding certainty equivalent, that take into account not only the expected values of the total reward but also its higher moments.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Oeconomica Pragensia
ISSN
0572-3043
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
16
Strana od-do
146-161
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—