Machine Learning-Based Plant Detection Algorithms to Automate Counting Tasks Using 3D Canopy Scans
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F21%3A88948" target="_blank" >RIV/60460709:41110/21:88948 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1424-8220/21/23/8022" target="_blank" >https://www.mdpi.com/1424-8220/21/23/8022</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s21238022" target="_blank" >10.3390/s21238022</a>
Alternativní jazyky
Jazyk výsledku
čeština
Název v původním jazyce
Machine Learning-Based Plant Detection Algorithms to Automate Counting Tasks Using 3D Canopy Scans
Popis výsledku v původním jazyce
This study tested whether machine learning (ML) methods can effectively separate individual plants from complex 3D canopy laser scans as a prerequisite to analyzing particular plant features. For this, we scanned mung bean and chickpea crops with PlantEye (R) laser scanners. Firstly, we segmented the crop canopies from the background in 3D space using the Region Growing Segmentation algorithm. Then, Convolutional Neural Network (CNN) based ML algorithms were fine-tuned for plant counting. Application of the CNN-based (Convolutional Neural Network) processing architecture was possible only after we reduced the dimensionality of the data to 2D. This allowed for the identification of individual plants and their counting with an accuracy of 93,18% and 92,87% for mung bean and chickpea plants, respectively. These steps were connected to the phenotyping pipeline, which can now replace manual counting operations that are inefficient, costly, and error-prone. The use of CNN in this study was innovatively sol
Název v anglickém jazyce
Machine Learning-Based Plant Detection Algorithms to Automate Counting Tasks Using 3D Canopy Scans
Popis výsledku anglicky
This study tested whether machine learning (ML) methods can effectively separate individual plants from complex 3D canopy laser scans as a prerequisite to analyzing particular plant features. For this, we scanned mung bean and chickpea crops with PlantEye (R) laser scanners. Firstly, we segmented the crop canopies from the background in 3D space using the Region Growing Segmentation algorithm. Then, Convolutional Neural Network (CNN) based ML algorithms were fine-tuned for plant counting. Application of the CNN-based (Convolutional Neural Network) processing architecture was possible only after we reduced the dimensionality of the data to 2D. This allowed for the identification of individual plants and their counting with an accuracy of 93,18% and 92,87% for mung bean and chickpea plants, respectively. These steps were connected to the phenotyping pipeline, which can now replace manual counting operations that are inefficient, costly, and error-prone. The use of CNN in this study was innovatively sol
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SENSORS
ISSN
1424-8220
e-ISSN
1424-8220
Svazek periodika
21
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
20
Strana od-do
0-0
Kód UT WoS článku
000734652100001
EID výsledku v databázi Scopus
—