Pre-forecast modeling of airport electricity consumption time series
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F24%3A100141" target="_blank" >RIV/60460709:41110/24:100141 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.e3s-conferences.org/articles/e3sconf/abs/2024/117/e3sconf_greenenergy24_01019/e3sconf_greenenergy24_01019.html" target="_blank" >https://www.e3s-conferences.org/articles/e3sconf/abs/2024/117/e3sconf_greenenergy24_01019/e3sconf_greenenergy24_01019.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/e3sconf/202458701019" target="_blank" >10.1051/e3sconf/202458701019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pre-forecast modeling of airport electricity consumption time series
Popis výsledku v původním jazyce
The article analyzes the relevance of pre-forecast modeling of time series of electricity consumption by airports, systematizes the methods and ways of the specified pre-forecast modeling and considers some problems arising in the process of their use. A separate stage of preforecast modeling of electricity consumption by the airport is proposed, which contributes, on the one hand, to a fairly quick receipt of primary information about the forecasted object, and on the other hand - to a more effective and adequate final forecast. It is proposed to build a series of neural network models at the stage of preliminary forecasting, including convolutional, recurrence. As a model example, a neural network preforecast model of electricity consumption for the Lviv International Airport is built on the basis of statistical data for the period of relatively stable development of the Ukrainian economy. A comparative analysis of the obtained results of the neural network model with the constructed trend-seasonal model using analytical methods was carried out, which gave a positive result. Conclusions are made on the prospects of building preforecast models of time series of electricity consumption by the airport using neural networks
Název v anglickém jazyce
Pre-forecast modeling of airport electricity consumption time series
Popis výsledku anglicky
The article analyzes the relevance of pre-forecast modeling of time series of electricity consumption by airports, systematizes the methods and ways of the specified pre-forecast modeling and considers some problems arising in the process of their use. A separate stage of preforecast modeling of electricity consumption by the airport is proposed, which contributes, on the one hand, to a fairly quick receipt of primary information about the forecasted object, and on the other hand - to a more effective and adequate final forecast. It is proposed to build a series of neural network models at the stage of preliminary forecasting, including convolutional, recurrence. As a model example, a neural network preforecast model of electricity consumption for the Lviv International Airport is built on the basis of statistical data for the period of relatively stable development of the Ukrainian economy. A comparative analysis of the obtained results of the neural network model with the constructed trend-seasonal model using analytical methods was carried out, which gave a positive result. Conclusions are made on the prospects of building preforecast models of time series of electricity consumption by the airport using neural networks
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Scientific Conference on Green Energy, GreenEnergy 2024
ISBN
—
ISSN
2267-1242
e-ISSN
2267-1242
Počet stran výsledku
17
Strana od-do
1-17
Název nakladatele
E3S Web of Conferences
Místo vydání
Kyiv
Místo konání akce
Kyiv
Datum konání akce
1. 1. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—