Short-term hourly price forward curve prediction using Neural network and hybrid ARIMA-NN model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86095608" target="_blank" >RIV/61989100:27240/15:86095608 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/15:86095608
Výsledek na webu
<a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7222993" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7222993</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/DT.2015.7222993" target="_blank" >10.1109/DT.2015.7222993</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Short-term hourly price forward curve prediction using Neural network and hybrid ARIMA-NN model
Popis výsledku v původním jazyce
Even though the electricity HPFC (Hourly Price Forward Curve) is still surprisingly under-researched the prediction of electricity prices is highly important in order to keep power plants profitable or in order to optimize the electricity purchases based on future customers demand. In this work two methods to model and predict HPFC based on neural networks will be proposed and compared to more common time series approach - specifically ARIMA model. In the first method the neural network is applied to model the price at desired time as a function of some past observations and also to capture the seasonal character of the data. The second method uses hybrid model which consist of an ARIMA model combined with neural network. The ARIMA is used to capture linear patterns in the data. Then the neural network is used to model remaining non-linear residuals. In this case the whole process is done on deseasonalized data set. Both methods provide more accurate predictions than standard time series approach (in this case ARIMA model) and results clearly state that the neural network pproach is a valid alternative for forecasting (not just) economic time series.
Název v anglickém jazyce
Short-term hourly price forward curve prediction using Neural network and hybrid ARIMA-NN model
Popis výsledku anglicky
Even though the electricity HPFC (Hourly Price Forward Curve) is still surprisingly under-researched the prediction of electricity prices is highly important in order to keep power plants profitable or in order to optimize the electricity purchases based on future customers demand. In this work two methods to model and predict HPFC based on neural networks will be proposed and compared to more common time series approach - specifically ARIMA model. In the first method the neural network is applied to model the price at desired time as a function of some past observations and also to capture the seasonal character of the data. The second method uses hybrid model which consist of an ARIMA model combined with neural network. The ARIMA is used to capture linear patterns in the data. Then the neural network is used to model remaining non-linear residuals. In this case the whole process is done on deseasonalized data set. Both methods provide more accurate predictions than standard time series approach (in this case ARIMA model) and results clearly state that the neural network pproach is a valid alternative for forecasting (not just) economic time series.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on Information and Digital Technologies, IDT 2015
ISBN
978-1-4673-7185-8
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
335-338
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
New York
Místo konání akce
Žilina
Datum konání akce
7. 7. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000381481100052