Absorption Features in Soil Spectra Assessment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F15%3A68911" target="_blank" >RIV/60460709:41210/15:68911 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1366/14-07800" target="_blank" >http://dx.doi.org/10.1366/14-07800</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1366/14-07800" target="_blank" >10.1366/14-07800</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Absorption Features in Soil Spectra Assessment
Popis výsledku v původním jazyce
From a wide range of techniques appropriate to relate spectra measurements with soil properties, partial least squares (PLS) regression and support vector machines (SVM) are most commonly used. This is due to their predictive power and the availability of software tools. Both represent exclusively statistically based approaches and, as such, benefit from multiple responses of soil material in the spectrum. However, physical-based approaches that focus only on a single spectral feature, such as simple linear regression using selected continuum-removed spectra values as a predictor variable, often provide accurate estimates. Furthermore, if this approach extends to multiple cases by taking into account three basic absorption feature parameters (area, width, and depth) of all occurring features as predictors and subjecting them to best subset selection, one can achieve even higher prediction accuracy compared with PLS regression. Here, we attempt to further extend this approach by adding two additional
Název v anglickém jazyce
Absorption Features in Soil Spectra Assessment
Popis výsledku anglicky
From a wide range of techniques appropriate to relate spectra measurements with soil properties, partial least squares (PLS) regression and support vector machines (SVM) are most commonly used. This is due to their predictive power and the availability of software tools. Both represent exclusively statistically based approaches and, as such, benefit from multiple responses of soil material in the spectrum. However, physical-based approaches that focus only on a single spectral feature, such as simple linear regression using selected continuum-removed spectra values as a predictor variable, often provide accurate estimates. Furthermore, if this approach extends to multiple cases by taking into account three basic absorption feature parameters (area, width, and depth) of all occurring features as predictors and subjecting them to best subset selection, one can achieve even higher prediction accuracy compared with PLS regression. Here, we attempt to further extend this approach by adding two additional
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DF - Pedologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/QJ1230319" target="_blank" >QJ1230319: Vodní režim půd na svažitém zemědělsky využívaném území</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED SPECTROSCOPY
ISSN
0003-7028
e-ISSN
—
Svazek periodika
69
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
7
Strana od-do
1425-1431
Kód UT WoS článku
000366146300009
EID výsledku v databázi Scopus
—