Tree parameter estimation with iPhone point cloud data using multiple algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F24%3A100362" target="_blank" >RIV/60460709:41320/24:100362 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1080/01431161.2024.2409996" target="_blank" >http://dx.doi.org/10.1080/01431161.2024.2409996</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/01431161.2024.2409996" target="_blank" >10.1080/01431161.2024.2409996</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tree parameter estimation with iPhone point cloud data using multiple algorithms
Popis výsledku v původním jazyce
LiDAR technology introduced the possibility of indirectly estimating various tree parameters. In 2020, Apple incorporated LiDAR sensors into their iPhone 12 Pro. This brings an opportunity to make data collection and plot scanning incredibly convenient. The main aim is to search for a tool and software to estimate the most accurate Diameter at Breast Height (DBH) for individual trees. Therefore, this study focuses on using an iPhone 12 Pro for data collection of individual trees. The performance of three software tools (ForestScanner, rTLS, RANSAC) for the estimation of DBH with field-estimated DBH was compared. The investigation of the significance of the estimation of DBH for each tree species was performed using the three algorithms. In this context, the scanning of 123 trees comprising six species: pine, oak, beech, hornbeam, spruce, and fir was done. DBH was estimated of the scanned tree point cloud using a built-in algorithm of ForestScanner application in the iPhone 12 Pro, RANSAC (CloudCompare plugin), and rTLS (an R-based package). In this study, ForestScanner showed the best results. Therefore, ForestScanner can be used as a reliable tool for measuring DBH. Inferences confirmed by ANOVA and Tukey post-hoc tests show that species significantly influence DBH. Accurate DBH estimation is crucial, and using lightweight devices like the iPhone can revolutionize the forest inventory sector in terms of the estimation of DBH.
Název v anglickém jazyce
Tree parameter estimation with iPhone point cloud data using multiple algorithms
Popis výsledku anglicky
LiDAR technology introduced the possibility of indirectly estimating various tree parameters. In 2020, Apple incorporated LiDAR sensors into their iPhone 12 Pro. This brings an opportunity to make data collection and plot scanning incredibly convenient. The main aim is to search for a tool and software to estimate the most accurate Diameter at Breast Height (DBH) for individual trees. Therefore, this study focuses on using an iPhone 12 Pro for data collection of individual trees. The performance of three software tools (ForestScanner, rTLS, RANSAC) for the estimation of DBH with field-estimated DBH was compared. The investigation of the significance of the estimation of DBH for each tree species was performed using the three algorithms. In this context, the scanning of 123 trees comprising six species: pine, oak, beech, hornbeam, spruce, and fir was done. DBH was estimated of the scanned tree point cloud using a built-in algorithm of ForestScanner application in the iPhone 12 Pro, RANSAC (CloudCompare plugin), and rTLS (an R-based package). In this study, ForestScanner showed the best results. Therefore, ForestScanner can be used as a reliable tool for measuring DBH. Inferences confirmed by ANOVA and Tukey post-hoc tests show that species significantly influence DBH. Accurate DBH estimation is crucial, and using lightweight devices like the iPhone can revolutionize the forest inventory sector in terms of the estimation of DBH.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20700 - Environmental engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INTERNATIONAL JOURNAL OF REMOTE SENSING
ISSN
0143-1161
e-ISSN
0143-1161
Svazek periodika
2024
Číslo periodika v rámci svazku
18.0
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
001331842400001
EID výsledku v databázi Scopus
2-s2.0-85206572899