Seamlessly combined historical and projected daily meteorological datasets for impact studies in Central Europe: The FORESEE v4.0 and the FORESEE-HUN v1.0
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F24%3A101691" target="_blank" >RIV/60460709:41320/24:101691 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S240588072300105X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S240588072300105X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cliser.2023.100443" target="_blank" >10.1016/j.cliser.2023.100443</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Seamlessly combined historical and projected daily meteorological datasets for impact studies in Central Europe: The FORESEE v4.0 and the FORESEE-HUN v1.0
Popis výsledku v původním jazyce
The FORESEE is an open access, climatological database for Central Europe containing observed and projected meteorological data for the 1951–2100 period. As a climate service, FORESEE disseminates basic meteorological variables at a daily time step with a 0.1° × 0.1° spatial resolution including maximum/minimum temperature, precipitation, incoming shortwave solar radiation and daylight vapour pressure deficit. The future climate in FORESEE v4.0 and FORESEE-HUN v1.0 is projected by 14 regional climate models from the EURO-CORDEX database using the Representative Concentration Pathways (RCP) 4.5 and 8.5 scenarios. Based on RCP4.5 the country-specific results indicate similar projected mean changes in annual mean temperature (1.5–1.7 °C) but considerable differences in precipitation (from -1.6 to 6.9%) in the region for 2071–2100 relative to 1991–2020. We present two case studies to demonstrate the applicability of FORESEE in climate change impact studies using the ensemble approach. Climate change induced negative weather effect (15.4% and 28.9% mean loss for 2071–2100 according to RCP4.5 and RCP8.5, respectively) might dominate the future winter wheat yields in Hungary that is superimposed to the overall trend determined by other factors. The projections provide consistent results about the mean advance in the start of the growing season for forests in Hungary up to 2100 with ensemble mean of 9.1 days (RCP4.5) and 19.8 days (RCP8.5). We also demonstrate that the representative model selection method might lead to misleading results in impact studies that should be considered. The updated FORESEE is a way forward in the dissemination of policy-relevant essential climate data in Central Europe.
Název v anglickém jazyce
Seamlessly combined historical and projected daily meteorological datasets for impact studies in Central Europe: The FORESEE v4.0 and the FORESEE-HUN v1.0
Popis výsledku anglicky
The FORESEE is an open access, climatological database for Central Europe containing observed and projected meteorological data for the 1951–2100 period. As a climate service, FORESEE disseminates basic meteorological variables at a daily time step with a 0.1° × 0.1° spatial resolution including maximum/minimum temperature, precipitation, incoming shortwave solar radiation and daylight vapour pressure deficit. The future climate in FORESEE v4.0 and FORESEE-HUN v1.0 is projected by 14 regional climate models from the EURO-CORDEX database using the Representative Concentration Pathways (RCP) 4.5 and 8.5 scenarios. Based on RCP4.5 the country-specific results indicate similar projected mean changes in annual mean temperature (1.5–1.7 °C) but considerable differences in precipitation (from -1.6 to 6.9%) in the region for 2071–2100 relative to 1991–2020. We present two case studies to demonstrate the applicability of FORESEE in climate change impact studies using the ensemble approach. Climate change induced negative weather effect (15.4% and 28.9% mean loss for 2071–2100 according to RCP4.5 and RCP8.5, respectively) might dominate the future winter wheat yields in Hungary that is superimposed to the overall trend determined by other factors. The projections provide consistent results about the mean advance in the start of the growing season for forests in Hungary up to 2100 with ensemble mean of 9.1 days (RCP4.5) and 19.8 days (RCP8.5). We also demonstrate that the representative model selection method might lead to misleading results in impact studies that should be considered. The updated FORESEE is a way forward in the dissemination of policy-relevant essential climate data in Central Europe.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40102 - Forestry
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000803" target="_blank" >EF16_019/0000803: Excelentní Výzkum jako podpora Adaptace lesnictví a dřevařství na globální změnu a 4. průmyslovou revoluci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Climate Services
ISSN
2405-8807
e-ISSN
2405-8807
Svazek periodika
33
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
1-17
Kód UT WoS článku
001165800100001
EID výsledku v databázi Scopus
2-s2.0-85181067458