Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F16%3A70194" target="_blank" >RIV/60460709:41330/16:70194 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1155/2016/3868519" target="_blank" >http://dx.doi.org/10.1155/2016/3868519</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2016/3868519" target="_blank" >10.1155/2016/3868519</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks
Popis výsledku v původním jazyce
The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feed forward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) andwere derived for the period of 1948-2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feed forward multilayer perceptron with one hidden layer of neurons.
Název v anglickém jazyce
Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks
Popis výsledku anglicky
The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feed forward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) andwere derived for the period of 1948-2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feed forward multilayer perceptron with one hidden layer of neurons.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DA - Hydrologie a limnologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Intelligence and Neuroscience
ISSN
1687-5265
e-ISSN
—
Svazek periodika
2016
Číslo periodika v rámci svazku
3868519
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
17
Strana od-do
1-17
Kód UT WoS článku
000370270000001
EID výsledku v databázi Scopus
—