Combining Artificial Neural Networks and GIS Fundamentals for Coastal Erosion Prediction Modeling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F19%3A79605" target="_blank" >RIV/60460709:41330/19:79605 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2071-1050/11/4/975/htm" target="_blank" >https://www.mdpi.com/2071-1050/11/4/975/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/su11040975" target="_blank" >10.3390/su11040975</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combining Artificial Neural Networks and GIS Fundamentals for Coastal Erosion Prediction Modeling
Popis výsledku v původním jazyce
The complexities of coupled environmental and human systems across the space and time of fragile systems challenge new data driven methodologies. Combining geographic information systems and artificial neural networks allows us to design a model that forecasts the erosion changes in Costa da Caparica, Lisbon, Portugal, for 2021, with a high accuracy level. The developed model proves to be a powerful tool, as it analyzes and provides the where and the why dynamics that have happened or will happen in the future. According to the literature, Artificial Neural Networks present noteworthy advantages compared to the other methods that are used for prediction and decision making in urban coastal areas. In order to conduct a sensitivity analysis on natural and social forces, as well as dynamic relations in the dune beach system of the study area, two types of ANNs were tested on a GIS environment: radial basis function and multilayer perceptron. This model helps to understand the factors that impac
Název v anglickém jazyce
Combining Artificial Neural Networks and GIS Fundamentals for Coastal Erosion Prediction Modeling
Popis výsledku anglicky
The complexities of coupled environmental and human systems across the space and time of fragile systems challenge new data driven methodologies. Combining geographic information systems and artificial neural networks allows us to design a model that forecasts the erosion changes in Costa da Caparica, Lisbon, Portugal, for 2021, with a high accuracy level. The developed model proves to be a powerful tool, as it analyzes and provides the where and the why dynamics that have happened or will happen in the future. According to the literature, Artificial Neural Networks present noteworthy advantages compared to the other methods that are used for prediction and decision making in urban coastal areas. In order to conduct a sensitivity analysis on natural and social forces, as well as dynamic relations in the dune beach system of the study area, two types of ANNs were tested on a GIS environment: radial basis function and multilayer perceptron. This model helps to understand the factors that impac
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Geography
ISSN
0143-6228
e-ISSN
2071-1050
Svazek periodika
11
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
1-14
Kód UT WoS článku
000460819100035
EID výsledku v databázi Scopus
2-s2.0-85061580857