A spatially-explicit model of alien plant richness in Tenerife (Canary Islands)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F19%3A79753" target="_blank" >RIV/60460709:41330/19:79753 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1476945X18301107?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1476945X18301107?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ecocom.2019.03.002" target="_blank" >10.1016/j.ecocom.2019.03.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A spatially-explicit model of alien plant richness in Tenerife (Canary Islands)
Popis výsledku v původním jazyce
Biological invasions are one of the major threats to biodiversity, especially in oceanic islands. In the Canary Islands, the relationships between plant Alien Species Richness (ASR) and their environmental and anthropogenic determinants were thoroughly investigated using ecological models. However, previous predictive models rarely accounted for spatial autocorrelation (SAC) and uncertainty of predictions, thus missing crucial information related to model accuracy and predictions reliability. In this study, we propose a Generalized Linear Spatial Model (GLSM) for ASR under a Bayesian framework on Tenerife Island. Our aim is to test whether the inclusion of SAC into the modelling framework could improve model performance resulting in more reliable predictions. Results demonstrated as accounting for SAC dramatically reduced the models AIC (Delta AIC = 4423) and error magnitudes, showing also better performances in terms of goodness of fit. Calculation of uncertainty related to predicted values pointed
Název v anglickém jazyce
A spatially-explicit model of alien plant richness in Tenerife (Canary Islands)
Popis výsledku anglicky
Biological invasions are one of the major threats to biodiversity, especially in oceanic islands. In the Canary Islands, the relationships between plant Alien Species Richness (ASR) and their environmental and anthropogenic determinants were thoroughly investigated using ecological models. However, previous predictive models rarely accounted for spatial autocorrelation (SAC) and uncertainty of predictions, thus missing crucial information related to model accuracy and predictions reliability. In this study, we propose a Generalized Linear Spatial Model (GLSM) for ASR under a Bayesian framework on Tenerife Island. Our aim is to test whether the inclusion of SAC into the modelling framework could improve model performance resulting in more reliable predictions. Results demonstrated as accounting for SAC dramatically reduced the models AIC (Delta AIC = 4423) and error magnitudes, showing also better performances in terms of goodness of fit. Calculation of uncertainty related to predicted values pointed
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10618 - Ecology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ecological Complexity
ISSN
1476-945X
e-ISSN
1476-9840
Svazek periodika
2019
Číslo periodika v rámci svazku
38
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
75-82
Kód UT WoS článku
000487000500007
EID výsledku v databázi Scopus
2-s2.0-85064191377