Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Incorporation of spatial autocorrelation improves soil-landform modeling at A and B horizons

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F19%3A43916356" target="_blank" >RIV/62156489:43410/19:43916356 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00027073:_____/19:N0000011 RIV/60460709:41210/19:79661

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.catena.2019.104226" target="_blank" >https://doi.org/10.1016/j.catena.2019.104226</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.catena.2019.104226" target="_blank" >10.1016/j.catena.2019.104226</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Incorporation of spatial autocorrelation improves soil-landform modeling at A and B horizons

  • Popis výsledku v původním jazyce

    Research has shown that the performance of soil-landform models would improve if the effects of spatial autocorrelation were properly accounted for; however, it remains elusive whether the level of improvement would be predictable, based on the degree of spatial autocorrelation in the model variables. We evaluated this problem using 11 soil variables acquired from the A and B horizons along a hillslope of Žofínský Prales in the Czech Republic. The results showed that, with no exception, there were increases in R2 and decreases in the Akaike information criterion (AIC), residual autocorrelation, and root-mean-square errors (RMSEs), after incorporating the spatial filters extracted by spatial eigenvector mapping into non-spatial regression models. Furthermore, the improvement of the model was positively proportional to the degree of spatial autocorrelation, inherent in the soil variables. That is, there were strikingly linear and significant relationships, in which strongly autocorrelated soil variables (i.e., having a high Moran&apos;s I value) exhibited greater increases in R2 and decreases in AIC, residual autocorrelation, and RMSEs than their more weakly autocorrelated counterparts. These findings indicate that the degree of spatial autocorrelation present in soil properties can serve as a direct indicator for how much the performance of a traditional non-spatial soil-landform model would be enhanced, by explicitly taking into consideration the presence of spatial autocorrelation. More generally, our results potentially imply that the need for and benefit from incorporating spatial effects in geopedological modeling proportionally increases as the soil property of interest is more spatially structured (i.e., landform variables alone cannot capture soil spatial variability).

  • Název v anglickém jazyce

    Incorporation of spatial autocorrelation improves soil-landform modeling at A and B horizons

  • Popis výsledku anglicky

    Research has shown that the performance of soil-landform models would improve if the effects of spatial autocorrelation were properly accounted for; however, it remains elusive whether the level of improvement would be predictable, based on the degree of spatial autocorrelation in the model variables. We evaluated this problem using 11 soil variables acquired from the A and B horizons along a hillslope of Žofínský Prales in the Czech Republic. The results showed that, with no exception, there were increases in R2 and decreases in the Akaike information criterion (AIC), residual autocorrelation, and root-mean-square errors (RMSEs), after incorporating the spatial filters extracted by spatial eigenvector mapping into non-spatial regression models. Furthermore, the improvement of the model was positively proportional to the degree of spatial autocorrelation, inherent in the soil variables. That is, there were strikingly linear and significant relationships, in which strongly autocorrelated soil variables (i.e., having a high Moran&apos;s I value) exhibited greater increases in R2 and decreases in AIC, residual autocorrelation, and RMSEs than their more weakly autocorrelated counterparts. These findings indicate that the degree of spatial autocorrelation present in soil properties can serve as a direct indicator for how much the performance of a traditional non-spatial soil-landform model would be enhanced, by explicitly taking into consideration the presence of spatial autocorrelation. More generally, our results potentially imply that the need for and benefit from incorporating spatial effects in geopedological modeling proportionally increases as the soil property of interest is more spatially structured (i.e., landform variables alone cannot capture soil spatial variability).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40104 - Soil science

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-09427S" target="_blank" >GA19-09427S: Mystérium biogenního půdního krípu: biogeomorfologická úloha stromů v temperátních a tropických lesích a ekologické souvislosti</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Catena

  • ISSN

    0341-8162

  • e-ISSN

  • Svazek periodika

    183

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    104226

  • Kód UT WoS článku

    000488417700043

  • EID výsledku v databázi Scopus

    2-s2.0-85071738525