Incorporation of spatial autocorrelation improves soil-landforming at A and B horizons
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F19%3A00000286" target="_blank" >RIV/00025798:_____/19:00000286 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0341816219303686?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0341816219303686?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.catena.2019.104226" target="_blank" >10.1016/j.catena.2019.104226</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Incorporation of spatial autocorrelation improves soil-landforming at A and B horizons
Popis výsledku v původním jazyce
Research has shown that the performance of soil–landform models would improve if the effects of spatial autocorrelationwere properly accounted for; however, it remains elusive whether the level of improvement wouldbe predictable, based on the degree of spatial autocorrelation in the model variables. We evaluated this problemusing 11 soil variables acquired from the A and B horizons along a hillslope of Žofínský Prales in the CzechRepublic. The results showed that, with no exception, there were increases in R2 and decreases in the Akaikeinformation criterion (AIC), residual autocorrelation, and root-mean-square errors (RMSEs), after incorporatingthe spatial filters extracted by spatial eigenvector mapping into non-spatial regression models. Furthermore, theimprovement of the model was positively proportional to the degree of spatial autocorrelation, inherent in thesoil variables. That is, there were strikingly linear and significant relationships, in which strongly autocorrelatedsoil variables (i.e., having a high Moran's I value) exhibited greater increases in R2 and decreases in AIC, residualautocorrelation, and RMSEs than their more weakly autocorrelated counterparts. These findings indicate that thedegree of spatial autocorrelation present in soil properties can serve as a direct indicator for how much theperformance of a traditional non-spatial soil–landform model would be enhanced, by explicitly taking intoconsideration the presence of spatial autocorrelation. More generally, our results potentially imply that the needfor and benefit from incorporating spatial effects in geopedological modeling proportionally increases as the soilproperty of interest is more spatially structured (i.e., landform variables alone cannot capture soil spatialvariability).
Název v anglickém jazyce
Incorporation of spatial autocorrelation improves soil-landforming at A and B horizons
Popis výsledku anglicky
Research has shown that the performance of soil–landform models would improve if the effects of spatial autocorrelationwere properly accounted for; however, it remains elusive whether the level of improvement wouldbe predictable, based on the degree of spatial autocorrelation in the model variables. We evaluated this problemusing 11 soil variables acquired from the A and B horizons along a hillslope of Žofínský Prales in the CzechRepublic. The results showed that, with no exception, there were increases in R2 and decreases in the Akaikeinformation criterion (AIC), residual autocorrelation, and root-mean-square errors (RMSEs), after incorporatingthe spatial filters extracted by spatial eigenvector mapping into non-spatial regression models. Furthermore, theimprovement of the model was positively proportional to the degree of spatial autocorrelation, inherent in thesoil variables. That is, there were strikingly linear and significant relationships, in which strongly autocorrelatedsoil variables (i.e., having a high Moran's I value) exhibited greater increases in R2 and decreases in AIC, residualautocorrelation, and RMSEs than their more weakly autocorrelated counterparts. These findings indicate that thedegree of spatial autocorrelation present in soil properties can serve as a direct indicator for how much theperformance of a traditional non-spatial soil–landform model would be enhanced, by explicitly taking intoconsideration the presence of spatial autocorrelation. More generally, our results potentially imply that the needfor and benefit from incorporating spatial effects in geopedological modeling proportionally increases as the soilproperty of interest is more spatially structured (i.e., landform variables alone cannot capture soil spatialvariability).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40104 - Soil science
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-17295S" target="_blank" >GA18-17295S: Vliv klimatu a znečištění ovzduší na produktivitu lesů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Catena
ISSN
0341-8162
e-ISSN
—
Svazek periodika
183
Číslo periodika v rámci svazku
December :104226
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
14
Strana od-do
nestránkováno
Kód UT WoS článku
000488417700043
EID výsledku v databázi Scopus
2-s2.0-85071738525