Consequences of spatial structure in soil-geomorphic data on the results of machine learning models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027073%3A_____%2F23%3AN0000016" target="_blank" >RIV/00027073:_____/23:N0000016 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62156489:43410/23:43923822
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/10106049.2023.2245381" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/10106049.2023.2245381</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10106049.2023.2245381" target="_blank" >10.1080/10106049.2023.2245381</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Consequences of spatial structure in soil-geomorphic data on the results of machine learning models
Popis výsledku v původním jazyce
In this paper, we examined the degree to which inherent spatial structure in soil properties influences the outcomes of machine learning (ML) approaches to predicting soil spatial variability. We compared the performances of four ML algorithms (support vector machine, artificial neural network, random forest, and random forest for spatial data) against two non-ML algorithms (ordinary least squares regression and spatial filtering regression). None of the ML algorithms produced residuals that had lower mean values or were less autocorrelated over space compared with the non-ML approaches. We recommend the use of random forest when a soil variable of interest is weakly autocorrelated (Moran's I < 0.1) and spatial filtering regression when it is relatively strongly autocorrelated (Moran's I > 0.4). Overall, this work opens the door to a more consistent selection of model algorithms through the establishment of threshold criteria for spatial autocorrelation of input variables.
Název v anglickém jazyce
Consequences of spatial structure in soil-geomorphic data on the results of machine learning models
Popis výsledku anglicky
In this paper, we examined the degree to which inherent spatial structure in soil properties influences the outcomes of machine learning (ML) approaches to predicting soil spatial variability. We compared the performances of four ML algorithms (support vector machine, artificial neural network, random forest, and random forest for spatial data) against two non-ML algorithms (ordinary least squares regression and spatial filtering regression). None of the ML algorithms produced residuals that had lower mean values or were less autocorrelated over space compared with the non-ML approaches. We recommend the use of random forest when a soil variable of interest is weakly autocorrelated (Moran's I < 0.1) and spatial filtering regression when it is relatively strongly autocorrelated (Moran's I > 0.4). Overall, this work opens the door to a more consistent selection of model algorithms through the establishment of threshold criteria for spatial autocorrelation of input variables.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
<a href="/cs/project/SS02030018" target="_blank" >SS02030018: Centrum pro krajinu a biodiverzitu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geocarto International
ISSN
1010-6049
e-ISSN
1752-0762
Svazek periodika
38
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
2245381
Kód UT WoS článku
001048405500001
EID výsledku v databázi Scopus
2-s2.0-85168159365