Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predicting the Influence of Multi-Scale Spatial Autocorrelation on Soil-Landform Modeling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027073%3A_____%2F16%3AN0000044" target="_blank" >RIV/00027073:_____/16:N0000044 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://dl.sciencesocieties.org/publications/sssaj/abstracts/80/2/409?access=0&view=pdf" target="_blank" >https://dl.sciencesocieties.org/publications/sssaj/abstracts/80/2/409?access=0&view=pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2136/sssaj2015.10.0370" target="_blank" >10.2136/sssaj2015.10.0370</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predicting the Influence of Multi-Scale Spatial Autocorrelation on Soil-Landform Modeling

  • Popis výsledku v původním jazyce

    Although numerous soil–landform modeling investigations have documented the effects and importance of spatial autocorrelation (SAC), little is known about how to predict the magnitude of those effects from the degree of SAC in the model variables. In this study, we quantified the SAC inherent in soil and landform variables of four widely divergent pedogeomorphological systems around the world to examine general relationships between SAC and spatial regression model results. Spatial regressions were performed by incorporating spatial filters, extracted by spatial eigenvector mapping, into non-spatial models as additional predictor variables. Results indicated that incorporation of spatial filters improved the performance of the non-spatial regressions—increases in R2 and decreases in both Akaike Information Criterion (AIC) and residual SAC were observed. More remarkable was that the degree of improvement was strongly and linearly related (i.e., proportional) to the level of SAC inherently possessed by each soil variable. Our findings show that spatial modeling outcomes are sensitive to the degree of SAC possessed by a soil property when treated as a response variable. Thus, the level of SAC present in a soil variable can serve as a direct indicator for how much improvement a non-spatial model will undergo if that SAC is appropriately taken into account.

  • Název v anglickém jazyce

    Predicting the Influence of Multi-Scale Spatial Autocorrelation on Soil-Landform Modeling

  • Popis výsledku anglicky

    Although numerous soil–landform modeling investigations have documented the effects and importance of spatial autocorrelation (SAC), little is known about how to predict the magnitude of those effects from the degree of SAC in the model variables. In this study, we quantified the SAC inherent in soil and landform variables of four widely divergent pedogeomorphological systems around the world to examine general relationships between SAC and spatial regression model results. Spatial regressions were performed by incorporating spatial filters, extracted by spatial eigenvector mapping, into non-spatial models as additional predictor variables. Results indicated that incorporation of spatial filters improved the performance of the non-spatial regressions—increases in R2 and decreases in both Akaike Information Criterion (AIC) and residual SAC were observed. More remarkable was that the degree of improvement was strongly and linearly related (i.e., proportional) to the level of SAC inherently possessed by each soil variable. Our findings show that spatial modeling outcomes are sensitive to the degree of SAC possessed by a soil property when treated as a response variable. Thus, the level of SAC present in a soil variable can serve as a direct indicator for how much improvement a non-spatial model will undergo if that SAC is appropriately taken into account.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    DF - Pedologie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LH12039" target="_blank" >LH12039: Význam disturbancí pro pedogenezi a variabilitu půd temperátních lesů: syntéza napříč půdotvornými procesy, prostorovými a časovými škálami</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Soil Science Society of America Journal

  • ISSN

    0361-5995

  • e-ISSN

  • Svazek periodika

    80

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    409-419

  • Kód UT WoS článku

    000376399200014

  • EID výsledku v databázi Scopus