Predicting the Influence of Multi-Scale Spatial Autocorrelation on Soil-Landform Modeling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027073%3A_____%2F16%3AN0000044" target="_blank" >RIV/00027073:_____/16:N0000044 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.sciencesocieties.org/publications/sssaj/abstracts/80/2/409?access=0&view=pdf" target="_blank" >https://dl.sciencesocieties.org/publications/sssaj/abstracts/80/2/409?access=0&view=pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2136/sssaj2015.10.0370" target="_blank" >10.2136/sssaj2015.10.0370</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting the Influence of Multi-Scale Spatial Autocorrelation on Soil-Landform Modeling
Popis výsledku v původním jazyce
Although numerous soil–landform modeling investigations have documented the effects and importance of spatial autocorrelation (SAC), little is known about how to predict the magnitude of those effects from the degree of SAC in the model variables. In this study, we quantified the SAC inherent in soil and landform variables of four widely divergent pedogeomorphological systems around the world to examine general relationships between SAC and spatial regression model results. Spatial regressions were performed by incorporating spatial filters, extracted by spatial eigenvector mapping, into non-spatial models as additional predictor variables. Results indicated that incorporation of spatial filters improved the performance of the non-spatial regressions—increases in R2 and decreases in both Akaike Information Criterion (AIC) and residual SAC were observed. More remarkable was that the degree of improvement was strongly and linearly related (i.e., proportional) to the level of SAC inherently possessed by each soil variable. Our findings show that spatial modeling outcomes are sensitive to the degree of SAC possessed by a soil property when treated as a response variable. Thus, the level of SAC present in a soil variable can serve as a direct indicator for how much improvement a non-spatial model will undergo if that SAC is appropriately taken into account.
Název v anglickém jazyce
Predicting the Influence of Multi-Scale Spatial Autocorrelation on Soil-Landform Modeling
Popis výsledku anglicky
Although numerous soil–landform modeling investigations have documented the effects and importance of spatial autocorrelation (SAC), little is known about how to predict the magnitude of those effects from the degree of SAC in the model variables. In this study, we quantified the SAC inherent in soil and landform variables of four widely divergent pedogeomorphological systems around the world to examine general relationships between SAC and spatial regression model results. Spatial regressions were performed by incorporating spatial filters, extracted by spatial eigenvector mapping, into non-spatial models as additional predictor variables. Results indicated that incorporation of spatial filters improved the performance of the non-spatial regressions—increases in R2 and decreases in both Akaike Information Criterion (AIC) and residual SAC were observed. More remarkable was that the degree of improvement was strongly and linearly related (i.e., proportional) to the level of SAC inherently possessed by each soil variable. Our findings show that spatial modeling outcomes are sensitive to the degree of SAC possessed by a soil property when treated as a response variable. Thus, the level of SAC present in a soil variable can serve as a direct indicator for how much improvement a non-spatial model will undergo if that SAC is appropriately taken into account.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DF - Pedologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LH12039" target="_blank" >LH12039: Význam disturbancí pro pedogenezi a variabilitu půd temperátních lesů: syntéza napříč půdotvornými procesy, prostorovými a časovými škálami</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Soil Science Society of America Journal
ISSN
0361-5995
e-ISSN
—
Svazek periodika
80
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
409-419
Kód UT WoS článku
000376399200014
EID výsledku v databázi Scopus
—