Performance assessment of evapotranspiration estimated from different data sources over agricultural landscape in Northern India
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F20%3A82187" target="_blank" >RIV/60460709:41330/20:82187 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs00704-019-03076-4" target="_blank" >https://link.springer.com/article/10.1007%2Fs00704-019-03076-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00704-019-03076-4" target="_blank" >10.1007/s00704-019-03076-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance assessment of evapotranspiration estimated from different data sources over agricultural landscape in Northern India
Popis výsledku v původním jazyce
Accurate estimation of evapotranspiration is generally constrained due to lack of required hydrometeorological datasets. This study addresses the performance analysis of reference evapotranspiration (ETo) estimated from NASA/POWER, National Center for Environmental Prediction (NCEP) global reanalysis data before and after dynamical downscaling through the Weather Research and Forecasting (WRF) model. The state-of-the-art Hamons and Penman-Monteiths methods were utilized for the ETo estimation in the Northern India. The performance indices such as bias, root mean square error (RMSE), and correlation (r) were calculated, which showed the values 0,242, 0,422, and 0,959 for NCEP data (without downscaling) and 0,230, 0,402, and 0,969 for the downscaled data respectively. The results indicated that after WRF downscaling, there was some marginal improvement found in the ETo as compared to the without downscaling datasets. However, a better performance was found in the case of NASA/POWER datasets with bias,
Název v anglickém jazyce
Performance assessment of evapotranspiration estimated from different data sources over agricultural landscape in Northern India
Popis výsledku anglicky
Accurate estimation of evapotranspiration is generally constrained due to lack of required hydrometeorological datasets. This study addresses the performance analysis of reference evapotranspiration (ETo) estimated from NASA/POWER, National Center for Environmental Prediction (NCEP) global reanalysis data before and after dynamical downscaling through the Weather Research and Forecasting (WRF) model. The state-of-the-art Hamons and Penman-Monteiths methods were utilized for the ETo estimation in the Northern India. The performance indices such as bias, root mean square error (RMSE), and correlation (r) were calculated, which showed the values 0,242, 0,422, and 0,959 for NCEP data (without downscaling) and 0,230, 0,402, and 0,969 for the downscaled data respectively. The results indicated that after WRF downscaling, there was some marginal improvement found in the ETo as compared to the without downscaling datasets. However, a better performance was found in the case of NASA/POWER datasets with bias,
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10501 - Hydrology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical and Applied Climatology
ISSN
0177-798X
e-ISSN
1434-4483
Svazek periodika
140
Číslo periodika v rámci svazku
1-2
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
12
Strana od-do
145-156
Kód UT WoS článku
000521505600011
EID výsledku v databázi Scopus
2-s2.0-85077520211