Explanation and Probabilistic Prediction of Hydrological Signatures with Statistical Boosting Algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F21%3A86954" target="_blank" >RIV/60460709:41330/21:86954 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2072-4292/13/3/333" target="_blank" >https://www.mdpi.com/2072-4292/13/3/333</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs13030333" target="_blank" >10.3390/rs13030333</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Explanation and Probabilistic Prediction of Hydrological Signatures with Statistical Boosting Algorithms
Popis výsledku v původním jazyce
Hydrological signatures, i.e., statistical features of streamflow time series, are used to characterize the hydrology of a region. A relevant problem is the prediction of hydrological signatures in ungauged regions using the attributes obtained from remote sensing measurements at ungauged and gauged regions together with estimated hydrological signatures from gauged regions. The relevant framework is formulated as a regression problem, where the attributes are the predictor variables and the hydrological signatures are the dependent variables. Here we aim to provide probabilistic predictions of hydrological signatures using statistical boosting in a regression setting. We predict 12 hydrological signatures using 28 attributes in 667 basins in the contiguous US. We provide formal assessment of probabilistic predictions using quantile scores. We also exploit the statistical boosting properties with respect to the interpretability of derived models. It is shown that probabilistic predictions at quantile
Název v anglickém jazyce
Explanation and Probabilistic Prediction of Hydrological Signatures with Statistical Boosting Algorithms
Popis výsledku anglicky
Hydrological signatures, i.e., statistical features of streamflow time series, are used to characterize the hydrology of a region. A relevant problem is the prediction of hydrological signatures in ungauged regions using the attributes obtained from remote sensing measurements at ungauged and gauged regions together with estimated hydrological signatures from gauged regions. The relevant framework is formulated as a regression problem, where the attributes are the predictor variables and the hydrological signatures are the dependent variables. Here we aim to provide probabilistic predictions of hydrological signatures using statistical boosting in a regression setting. We predict 12 hydrological signatures using 28 attributes in 667 basins in the contiguous US. We provide formal assessment of probabilistic predictions using quantile scores. We also exploit the statistical boosting properties with respect to the interpretability of derived models. It is shown that probabilistic predictions at quantile
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10501 - Hydrology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing
ISSN
2072-4292
e-ISSN
2072-4292
Svazek periodika
13
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
23
Strana od-do
1-23
Kód UT WoS článku
000615520100001
EID výsledku v databázi Scopus
2-s2.0-85099780284