Discrimination of grapevine varieties cultivated in the Czech Republic by Artificial Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41340%2F13%3A60393" target="_blank" >RIV/60460709:41340/13:60393 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Discrimination of grapevine varieties cultivated in the Czech Republic by Artificial Neural Networks
Popis výsledku v původním jazyce
An artificial neural network approach, based on fractal leaf parameters, and classical ampelography were used to identify nine grapevine varieties cultivated at the St. Claire?s vineyard, Prague Botanic Garden. Fifty healthy, fully-expanded leaves were collected for each variety, scanned using an optical scanner and then elaborated by computer programs. Fourteen phyllometric parameters were qualitatively and quantitatively analysed by the digital image analysis. Comparative frames were constructed for each variety and the relationships among varieties were assessed using artificial neural networks. Results were then compared with the outcome from traditional ampelographic analysis. The Artificial Neural Network technique appears to be a complementary approach to the traditional ampelography methods commonly used for cultivar discrimination, since the equipment necessary for this analysis is very inexpensive and available. Application of the technique led to the distinction of nine sele
Název v anglickém jazyce
Discrimination of grapevine varieties cultivated in the Czech Republic by Artificial Neural Networks
Popis výsledku anglicky
An artificial neural network approach, based on fractal leaf parameters, and classical ampelography were used to identify nine grapevine varieties cultivated at the St. Claire?s vineyard, Prague Botanic Garden. Fifty healthy, fully-expanded leaves were collected for each variety, scanned using an optical scanner and then elaborated by computer programs. Fourteen phyllometric parameters were qualitatively and quantitatively analysed by the digital image analysis. Comparative frames were constructed for each variety and the relationships among varieties were assessed using artificial neural networks. Results were then compared with the outcome from traditional ampelographic analysis. The Artificial Neural Network technique appears to be a complementary approach to the traditional ampelography methods commonly used for cultivar discrimination, since the equipment necessary for this analysis is very inexpensive and available. Application of the technique led to the distinction of nine sele
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
GE - Šlechtění rostlin
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Horticultural Science
ISSN
0394-6169
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
3-4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
6
Strana od-do
187-192
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—