Foaming during nuclear waste melter feeds conversion to glass: Application of evolved gas analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F18%3A43917162" target="_blank" >RIV/60461373:22310/18:43917162 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985891:_____/18:00497147
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/full/10.1111/ijag.12353" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1111/ijag.12353</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/ijag.12353" target="_blank" >10.1111/ijag.12353</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Foaming during nuclear waste melter feeds conversion to glass: Application of evolved gas analysis
Popis výsledku v původním jazyce
During the final stages of batch-to-glass conversion in a waste-glass melter, gases evolving in the cold cap produce primary foam, the formation and collapse of which control the glass production rate via its effect on heat transfer to the reacting batch. We performed quantitative evolved gas analysis (EGA) for several HLW melter feeds with temperatures ranging from 100 to 1150°C, the whole temperature span in a cold cap. EGA results were supplemented with visual observation of batch-to-glass transition using the feed expansion tests. Upon heating, most of the gases mainly H2O, CO2, NO, NO2, N-2, and O(2)evolve at temperatures below 700°C and escape directly to the atmosphere through open porosity. However, as open porosity closes when enough glass-forming melt appears at 720°C, the residual gas evolution leads to the formation of primary foam. We found that primary foaming is mostly caused by the decomposition of residual carbonates, though oxygen evolution from iron-redox reaction can also play a role. We also show that the gas evolution shifts to a higher temperature when the heating rate increases. The implications for the mathematical modeling of foam layer in the cold cap are presented.
Název v anglickém jazyce
Foaming during nuclear waste melter feeds conversion to glass: Application of evolved gas analysis
Popis výsledku anglicky
During the final stages of batch-to-glass conversion in a waste-glass melter, gases evolving in the cold cap produce primary foam, the formation and collapse of which control the glass production rate via its effect on heat transfer to the reacting batch. We performed quantitative evolved gas analysis (EGA) for several HLW melter feeds with temperatures ranging from 100 to 1150°C, the whole temperature span in a cold cap. EGA results were supplemented with visual observation of batch-to-glass transition using the feed expansion tests. Upon heating, most of the gases mainly H2O, CO2, NO, NO2, N-2, and O(2)evolve at temperatures below 700°C and escape directly to the atmosphere through open porosity. However, as open porosity closes when enough glass-forming melt appears at 720°C, the residual gas evolution leads to the formation of primary foam. We found that primary foaming is mostly caused by the decomposition of residual carbonates, though oxygen evolution from iron-redox reaction can also play a role. We also show that the gas evolution shifts to a higher temperature when the heating rate increases. The implications for the mathematical modeling of foam layer in the cold cap are presented.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20504 - Ceramics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Applied Glass Science
ISSN
2041-1286
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
487-498
Kód UT WoS článku
000443390700004
EID výsledku v databázi Scopus
2-s2.0-85045843375